// // epoll_reactor.hpp // ~~~~~~~~~~~~~~~~~ // // Copyright (c) 2003-2006 Christopher M. Kohlhoff (chris at kohlhoff dot com) // // Distributed under the Boost Software License, Version 1.0. (See accompanying // file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt) // #ifndef BOOST_ASIO_DETAIL_EPOLL_REACTOR_HPP #define BOOST_ASIO_DETAIL_EPOLL_REACTOR_HPP #if defined(_MSC_VER) && (_MSC_VER >= 1200) # pragma once #endif // defined(_MSC_VER) && (_MSC_VER >= 1200) #include #include #if defined(BOOST_ASIO_HAS_EPOLL) #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include namespace boost { namespace asio { namespace detail { template class epoll_reactor : public boost::asio::io_service::service { public: // Constructor. epoll_reactor(boost::asio::io_service& io_service) : boost::asio::io_service::service(io_service), mutex_(), epoll_fd_(do_epoll_create()), wait_in_progress_(false), interrupter_(), read_op_queue_(), write_op_queue_(), except_op_queue_(), pending_cancellations_(), stop_thread_(false), thread_(0), shutdown_(false) { // Start the reactor's internal thread only if needed. if (Own_Thread) { boost::asio::detail::signal_blocker sb; thread_ = new boost::asio::detail::thread( bind_handler(&epoll_reactor::call_run_thread, this)); } // Add the interrupter's descriptor to epoll. epoll_event ev = { 0, { 0 } }; ev.events = EPOLLIN | EPOLLERR; ev.data.fd = interrupter_.read_descriptor(); epoll_ctl(epoll_fd_, EPOLL_CTL_ADD, interrupter_.read_descriptor(), &ev); } // Destructor. ~epoll_reactor() { shutdown_service(); close(epoll_fd_); } // Destroy all user-defined handler objects owned by the service. void shutdown_service() { boost::asio::detail::mutex::scoped_lock lock(mutex_); shutdown_ = true; stop_thread_ = true; lock.unlock(); if (thread_) { interrupter_.interrupt(); thread_->join(); delete thread_; thread_ = 0; } read_op_queue_.destroy_operations(); write_op_queue_.destroy_operations(); except_op_queue_.destroy_operations(); timer_queue_.destroy_timers(); } // Register a socket with the reactor. Returns 0 on success, system error // code on failure. int register_descriptor(socket_type descriptor) { // No need to lock according to epoll documentation. epoll_event ev = { 0, { 0 } }; ev.events = 0; ev.data.fd = descriptor; int result = epoll_ctl(epoll_fd_, EPOLL_CTL_ADD, descriptor, &ev); if (result != 0) return errno; return 0; } // Start a new read operation. The handler object will be invoked when the // given descriptor is ready to be read, or an error has occurred. template void start_read_op(socket_type descriptor, Handler handler) { boost::asio::detail::mutex::scoped_lock lock(mutex_); if (shutdown_) return; if (!read_op_queue_.has_operation(descriptor)) if (handler(0)) return; if (read_op_queue_.enqueue_operation(descriptor, handler)) { epoll_event ev = { 0, { 0 } }; ev.events = EPOLLIN | EPOLLERR | EPOLLHUP; if (write_op_queue_.has_operation(descriptor)) ev.events |= EPOLLOUT; if (except_op_queue_.has_operation(descriptor)) ev.events |= EPOLLPRI; ev.data.fd = descriptor; int result = epoll_ctl(epoll_fd_, EPOLL_CTL_MOD, descriptor, &ev); if (result != 0) { int error = errno; read_op_queue_.dispatch_all_operations(descriptor, error); } } } // Start a new write operation. The handler object will be invoked when the // given descriptor is ready to be written, or an error has occurred. template void start_write_op(socket_type descriptor, Handler handler) { boost::asio::detail::mutex::scoped_lock lock(mutex_); if (shutdown_) return; if (!write_op_queue_.has_operation(descriptor)) if (handler(0)) return; if (write_op_queue_.enqueue_operation(descriptor, handler)) { epoll_event ev = { 0, { 0 } }; ev.events = EPOLLOUT | EPOLLERR | EPOLLHUP; if (read_op_queue_.has_operation(descriptor)) ev.events |= EPOLLIN; if (except_op_queue_.has_operation(descriptor)) ev.events |= EPOLLPRI; ev.data.fd = descriptor; int result = epoll_ctl(epoll_fd_, EPOLL_CTL_MOD, descriptor, &ev); if (result != 0) { int error = errno; write_op_queue_.dispatch_all_operations(descriptor, error); } } } // Start a new exception operation. The handler object will be invoked when // the given descriptor has exception information, or an error has occurred. template void start_except_op(socket_type descriptor, Handler handler) { boost::asio::detail::mutex::scoped_lock lock(mutex_); if (shutdown_) return; if (except_op_queue_.enqueue_operation(descriptor, handler)) { epoll_event ev = { 0, { 0 } }; ev.events = EPOLLPRI | EPOLLERR | EPOLLHUP; if (read_op_queue_.has_operation(descriptor)) ev.events |= EPOLLIN; if (write_op_queue_.has_operation(descriptor)) ev.events |= EPOLLOUT; ev.data.fd = descriptor; int result = epoll_ctl(epoll_fd_, EPOLL_CTL_MOD, descriptor, &ev); if (result != 0) { int error = errno; except_op_queue_.dispatch_all_operations(descriptor, error); } } } // Start new write and exception operations. The handler object will be // invoked when the given descriptor is ready for writing or has exception // information available, or an error has occurred. template void start_write_and_except_ops(socket_type descriptor, Handler handler) { boost::asio::detail::mutex::scoped_lock lock(mutex_); if (shutdown_) return; bool need_mod = write_op_queue_.enqueue_operation(descriptor, handler); need_mod = except_op_queue_.enqueue_operation(descriptor, handler) && need_mod; if (need_mod) { epoll_event ev = { 0, { 0 } }; ev.events = EPOLLOUT | EPOLLPRI | EPOLLERR | EPOLLHUP; if (read_op_queue_.has_operation(descriptor)) ev.events |= EPOLLIN; ev.data.fd = descriptor; int result = epoll_ctl(epoll_fd_, EPOLL_CTL_MOD, descriptor, &ev); if (result != 0) { int error = errno; write_op_queue_.dispatch_all_operations(descriptor, error); except_op_queue_.dispatch_all_operations(descriptor, error); } } } // Cancel all operations associated with the given descriptor. The // handlers associated with the descriptor will be invoked with the // operation_aborted error. void cancel_ops(socket_type descriptor) { boost::asio::detail::mutex::scoped_lock lock(mutex_); cancel_ops_unlocked(descriptor); } // Enqueue cancellation of all operations associated with the given // descriptor. The handlers associated with the descriptor will be invoked // with the operation_aborted error. This function does not acquire the // epoll_reactor's mutex, and so should only be used from within a reactor // handler. void enqueue_cancel_ops_unlocked(socket_type descriptor) { pending_cancellations_.push_back(descriptor); } // Cancel any operations that are running against the descriptor and remove // its registration from the reactor. void close_descriptor(socket_type descriptor) { boost::asio::detail::mutex::scoped_lock lock(mutex_); // Remove the descriptor from epoll. epoll_event ev = { 0, { 0 } }; epoll_ctl(epoll_fd_, EPOLL_CTL_DEL, descriptor, &ev); // Cancel any outstanding operations associated with the descriptor. cancel_ops_unlocked(descriptor); } // Schedule a timer to expire at the specified absolute time. The handler // object will be invoked when the timer expires. template void schedule_timer(const boost::posix_time::ptime& time, Handler handler, void* token) { boost::asio::detail::mutex::scoped_lock lock(mutex_); if (!shutdown_) if (timer_queue_.enqueue_timer(time, handler, token)) interrupter_.interrupt(); } // Cancel the timer associated with the given token. Returns the number of // handlers that have been posted or dispatched. std::size_t cancel_timer(void* token) { boost::asio::detail::mutex::scoped_lock lock(mutex_); return timer_queue_.cancel_timer(token); } private: friend class task_io_service >; // Run epoll once until interrupted or events are ready to be dispatched. void run(bool block) { boost::asio::detail::mutex::scoped_lock lock(mutex_); // Dispatch any operation cancellations that were made while the select // loop was not running. read_op_queue_.dispatch_cancellations(); write_op_queue_.dispatch_cancellations(); except_op_queue_.dispatch_cancellations(); // Check if the thread is supposed to stop. if (stop_thread_) { // Clean up operations. We must not hold the lock since the operations may // make calls back into this reactor. lock.unlock(); read_op_queue_.cleanup_operations(); write_op_queue_.cleanup_operations(); except_op_queue_.cleanup_operations(); return; } // We can return immediately if there's no work to do and the reactor is // not supposed to block. if (!block && read_op_queue_.empty() && write_op_queue_.empty() && except_op_queue_.empty() && timer_queue_.empty()) { // Clean up operations. We must not hold the lock since the operations may // make calls back into this reactor. lock.unlock(); read_op_queue_.cleanup_operations(); write_op_queue_.cleanup_operations(); except_op_queue_.cleanup_operations(); return; } int timeout = block ? get_timeout() : 0; wait_in_progress_ = true; lock.unlock(); // Block on the epoll descriptor. epoll_event events[128]; int num_events = epoll_wait(epoll_fd_, events, 128, timeout); lock.lock(); wait_in_progress_ = false; // Block signals while dispatching operations. boost::asio::detail::signal_blocker sb; // Dispatch the waiting events. for (int i = 0; i < num_events; ++i) { int descriptor = events[i].data.fd; if (descriptor == interrupter_.read_descriptor()) { interrupter_.reset(); } else { if (events[i].events & (EPOLLERR | EPOLLHUP)) { except_op_queue_.dispatch_all_operations(descriptor, 0); read_op_queue_.dispatch_all_operations(descriptor, 0); write_op_queue_.dispatch_all_operations(descriptor, 0); epoll_event ev = { 0, { 0 } }; ev.events = 0; ev.data.fd = descriptor; epoll_ctl(epoll_fd_, EPOLL_CTL_MOD, descriptor, &ev); } else { bool more_reads = false; bool more_writes = false; bool more_except = false; // Exception operations must be processed first to ensure that any // out-of-band data is read before normal data. if (events[i].events & EPOLLPRI) more_except = except_op_queue_.dispatch_operation(descriptor, 0); else more_except = except_op_queue_.has_operation(descriptor); if (events[i].events & EPOLLIN) more_reads = read_op_queue_.dispatch_operation(descriptor, 0); else more_reads = read_op_queue_.has_operation(descriptor); if (events[i].events & EPOLLOUT) more_writes = write_op_queue_.dispatch_operation(descriptor, 0); else more_writes = write_op_queue_.has_operation(descriptor); epoll_event ev = { 0, { 0 } }; ev.events = EPOLLERR | EPOLLHUP; if (more_reads) ev.events |= EPOLLIN; if (more_writes) ev.events |= EPOLLOUT; if (more_except) ev.events |= EPOLLPRI; ev.data.fd = descriptor; int result = epoll_ctl(epoll_fd_, EPOLL_CTL_MOD, descriptor, &ev); if (result != 0) { int error = errno; read_op_queue_.dispatch_all_operations(descriptor, error); write_op_queue_.dispatch_all_operations(descriptor, error); except_op_queue_.dispatch_all_operations(descriptor, error); } } } } read_op_queue_.dispatch_cancellations(); write_op_queue_.dispatch_cancellations(); except_op_queue_.dispatch_cancellations(); timer_queue_.dispatch_timers( boost::posix_time::microsec_clock::universal_time()); // Issue any pending cancellations. for (size_t i = 0; i < pending_cancellations_.size(); ++i) cancel_ops_unlocked(pending_cancellations_[i]); pending_cancellations_.clear(); // Clean up operations. We must not hold the lock since the operations may // make calls back into this reactor. lock.unlock(); read_op_queue_.cleanup_operations(); write_op_queue_.cleanup_operations(); except_op_queue_.cleanup_operations(); } // Run the select loop in the thread. void run_thread() { boost::asio::detail::mutex::scoped_lock lock(mutex_); while (!stop_thread_) { lock.unlock(); run(true); lock.lock(); } } // Entry point for the select loop thread. static void call_run_thread(epoll_reactor* reactor) { reactor->run_thread(); } // Interrupt the select loop. void interrupt() { interrupter_.interrupt(); } // The hint to pass to epoll_create to size its data structures. enum { epoll_size = 20000 }; // Create the epoll file descriptor. Throws an exception if the descriptor // cannot be created. static int do_epoll_create() { int fd = epoll_create(epoll_size); if (fd == -1) { system_exception e("epoll", errno); boost::throw_exception(e); } return fd; } // Get the timeout value for the epoll_wait call. The timeout value is // returned as a number of milliseconds. A return value of -1 indicates // that epoll_wait should block indefinitely. int get_timeout() { if (timer_queue_.empty()) return -1; boost::posix_time::ptime now = boost::posix_time::microsec_clock::universal_time(); boost::posix_time::ptime earliest_timer; timer_queue_.get_earliest_time(earliest_timer); if (now < earliest_timer) { boost::posix_time::time_duration timeout = earliest_timer - now; const int max_timeout_in_seconds = INT_MAX / 1000; if (max_timeout_in_seconds < timeout.total_seconds()) return max_timeout_in_seconds * 1000; else return timeout.total_milliseconds(); } else { return 0; } } // Cancel all operations associated with the given descriptor. The do_cancel // function of the handler objects will be invoked. This function does not // acquire the epoll_reactor's mutex. void cancel_ops_unlocked(socket_type descriptor) { bool interrupt = read_op_queue_.cancel_operations(descriptor); interrupt = write_op_queue_.cancel_operations(descriptor) || interrupt; interrupt = except_op_queue_.cancel_operations(descriptor) || interrupt; if (interrupt) interrupter_.interrupt(); } // Mutex to protect access to internal data. boost::asio::detail::mutex mutex_; // The epoll file descriptor. int epoll_fd_; // Whether the epoll_wait call is currently in progress bool wait_in_progress_; // The interrupter is used to break a blocking epoll_wait call. select_interrupter interrupter_; // The queue of read operations. reactor_op_queue read_op_queue_; // The queue of write operations. reactor_op_queue write_op_queue_; // The queue of except operations. reactor_op_queue except_op_queue_; // The queue of timers. reactor_timer_queue timer_queue_; // The descriptors that are pending cancellation. std::vector pending_cancellations_; // Does the reactor loop thread need to stop. bool stop_thread_; // The thread that is running the reactor loop. boost::asio::detail::thread* thread_; // Whether the service has been shut down. bool shutdown_; }; } // namespace detail } // namespace asio } // namespace boost #endif // defined(BOOST_ASIO_HAS_EPOLL) #include #endif // BOOST_ASIO_DETAIL_EPOLL_REACTOR_HPP