// // reactive_socket_service.hpp // ~~~~~~~~~~~~~~~~~~~~~~~~~~~ // // Copyright (c) 2003-2006 Christopher M. Kohlhoff (chris at kohlhoff dot com) // // Distributed under the Boost Software License, Version 1.0. (See accompanying // file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt) // #ifndef BOOST_ASIO_DETAIL_REACTIVE_SOCKET_SERVICE_HPP #define BOOST_ASIO_DETAIL_REACTIVE_SOCKET_SERVICE_HPP #if defined(_MSC_VER) && (_MSC_VER >= 1200) # pragma once #endif // defined(_MSC_VER) && (_MSC_VER >= 1200) #include #include #include #include #include #include #include #include #include #include #include #include #include #include namespace boost { namespace asio { namespace detail { template class reactive_socket_service : public boost::asio::io_service::service { public: // The protocol type. typedef Protocol protocol_type; // The endpoint type. typedef typename Protocol::endpoint endpoint_type; // The native type of a socket. typedef socket_type native_type; // The implementation type of the socket. class implementation_type : private boost::asio::detail::noncopyable { public: // Default constructor. implementation_type() : socket_(invalid_socket), flags_(0), protocol_(endpoint_type().protocol()) { } private: // Only this service will have access to the internal values. friend class reactive_socket_service; // The native socket representation. socket_type socket_; enum { user_set_non_blocking = 1, // The user wants a non-blocking socket. internal_non_blocking = 2, // The socket has been set non-blocking. enable_connection_aborted = 4, // User wants connection_aborted errors. }; // Flags indicating the current state of the socket. unsigned char flags_; // The protocol associated with the socket. protocol_type protocol_; }; // The maximum number of buffers to support in a single operation. enum { max_buffers = 16 }; // Constructor. reactive_socket_service(boost::asio::io_service& io_service) : boost::asio::io_service::service(io_service), reactor_(boost::asio::use_service(io_service)) { } // Destroy all user-defined handler objects owned by the service. void shutdown_service() { } // Construct a new socket implementation. void construct(implementation_type& impl) { impl.socket_ = invalid_socket; impl.flags_ = 0; } // Destroy a socket implementation. void destroy(implementation_type& impl) { close(impl, boost::asio::ignore_error()); } // Open a new socket implementation. template void open(implementation_type& impl, const protocol_type& protocol, Error_Handler error_handler) { close(impl, boost::asio::ignore_error()); socket_holder sock(socket_ops::socket(protocol.family(), protocol.type(), protocol.protocol())); if (sock.get() == invalid_socket) { error_handler(boost::asio::error(socket_ops::get_error())); return; } if (int err = reactor_.register_descriptor(sock.get())) { error_handler(boost::asio::error(err)); return; } impl.socket_ = sock.release(); impl.flags_ = 0; impl.protocol_ = protocol; error_handler(boost::asio::error(0)); } // Assign a native socket to a socket implementation. template void assign(implementation_type& impl, const protocol_type& protocol, const native_type& native_socket, Error_Handler error_handler) { close(impl, boost::asio::ignore_error()); if (int err = reactor_.register_descriptor(native_socket)) { error_handler(boost::asio::error(err)); return; } impl.socket_ = native_socket; impl.flags_ = 0; impl.protocol_ = protocol; error_handler(boost::asio::error(0)); } // Destroy a socket implementation. template void close(implementation_type& impl, Error_Handler error_handler) { if (impl.socket_ != invalid_socket) { reactor_.close_descriptor(impl.socket_); if (impl.flags_ & implementation_type::internal_non_blocking) { ioctl_arg_type non_blocking = 0; socket_ops::ioctl(impl.socket_, FIONBIO, &non_blocking); impl.flags_ &= ~implementation_type::internal_non_blocking; } if (socket_ops::close(impl.socket_) == socket_error_retval) { error_handler(boost::asio::error(socket_ops::get_error())); return; } impl.socket_ = invalid_socket; } error_handler(boost::asio::error(0)); } // Get the native socket representation. native_type native(implementation_type& impl) { return impl.socket_; } // Bind the socket to the specified local endpoint. template void bind(implementation_type& impl, const endpoint_type& endpoint, Error_Handler error_handler) { if (socket_ops::bind(impl.socket_, endpoint.data(), endpoint.size()) == socket_error_retval) error_handler(boost::asio::error(socket_ops::get_error())); else error_handler(boost::asio::error(0)); } // Place the socket into the state where it will listen for new connections. template void listen(implementation_type& impl, int backlog, Error_Handler error_handler) { if (backlog == 0) backlog = SOMAXCONN; if (socket_ops::listen(impl.socket_, backlog) == socket_error_retval) error_handler(boost::asio::error(socket_ops::get_error())); else error_handler(boost::asio::error(0)); } // Set a socket option. template void set_option(implementation_type& impl, const Option& option, Error_Handler error_handler) { if (option.level(impl.protocol_) == custom_socket_option_level && option.name(impl.protocol_) == enable_connection_aborted_option) { if (option.size(impl.protocol_) != sizeof(int)) { error_handler(boost::asio::error(boost::asio::error::invalid_argument)); } else { if (*static_cast(option.data(impl.protocol_))) impl.flags_ |= implementation_type::enable_connection_aborted; else impl.flags_ &= ~implementation_type::enable_connection_aborted; error_handler(boost::asio::error(0)); } } else { if (socket_ops::setsockopt(impl.socket_, option.level(impl.protocol_), option.name(impl.protocol_), option.data(impl.protocol_), option.size(impl.protocol_))) error_handler(boost::asio::error(socket_ops::get_error())); else error_handler(boost::asio::error(0)); } } // Set a socket option. template void get_option(const implementation_type& impl, Option& option, Error_Handler error_handler) const { if (option.level(impl.protocol_) == custom_socket_option_level && option.name(impl.protocol_) == enable_connection_aborted_option) { if (option.size(impl.protocol_) != sizeof(int)) { error_handler(boost::asio::error(boost::asio::error::invalid_argument)); } else { int* target = static_cast(option.data(impl.protocol_)); if (impl.flags_ & implementation_type::enable_connection_aborted) *target = 1; else *target = 0; error_handler(boost::asio::error(0)); } } else { size_t size = option.size(impl.protocol_); if (socket_ops::getsockopt(impl.socket_, option.level(impl.protocol_), option.name(impl.protocol_), option.data(impl.protocol_), &size)) error_handler(boost::asio::error(socket_ops::get_error())); else error_handler(boost::asio::error(0)); } } // Perform an IO control command on the socket. template void io_control(implementation_type& impl, IO_Control_Command& command, Error_Handler error_handler) { if (command.name() == static_cast(FIONBIO)) { if (command.get()) impl.flags_ |= implementation_type::user_set_non_blocking; else impl.flags_ &= ~implementation_type::user_set_non_blocking; error_handler(boost::asio::error(0)); } else { if (socket_ops::ioctl(impl.socket_, command.name(), static_cast(command.data()))) error_handler(boost::asio::error(socket_ops::get_error())); else error_handler(boost::asio::error(0)); } } // Get the local endpoint. template void get_local_endpoint(const implementation_type& impl, endpoint_type& endpoint, Error_Handler error_handler) const { socket_addr_len_type addr_len = endpoint.capacity(); if (socket_ops::getsockname(impl.socket_, endpoint.data(), &addr_len)) { error_handler(boost::asio::error(socket_ops::get_error())); return; } endpoint.resize(addr_len); error_handler(boost::asio::error(0)); } // Get the remote endpoint. template void get_remote_endpoint(const implementation_type& impl, endpoint_type& endpoint, Error_Handler error_handler) const { socket_addr_len_type addr_len = endpoint.capacity(); if (socket_ops::getpeername(impl.socket_, endpoint.data(), &addr_len)) { error_handler(boost::asio::error(socket_ops::get_error())); return; } endpoint.resize(addr_len); error_handler(boost::asio::error(0)); } /// Disable sends or receives on the socket. template void shutdown(implementation_type& impl, socket_base::shutdown_type what, Error_Handler error_handler) { if (socket_ops::shutdown(impl.socket_, what) != 0) error_handler(boost::asio::error(socket_ops::get_error())); else error_handler(boost::asio::error(0)); } // Send the given data to the peer. template size_t send(implementation_type& impl, const Const_Buffers& buffers, socket_base::message_flags flags, Error_Handler error_handler) { // Copy buffers into array. socket_ops::buf bufs[max_buffers]; typename Const_Buffers::const_iterator iter = buffers.begin(); typename Const_Buffers::const_iterator end = buffers.end(); size_t i = 0; for (; iter != end && i < max_buffers; ++iter, ++i) { boost::asio::const_buffer buffer(*iter); socket_ops::init_buf(bufs[i], boost::asio::buffer_cast(buffer), boost::asio::buffer_size(buffer)); } // Send the data. for (;;) { // Try to complete the operation without blocking. int bytes_sent = socket_ops::send(impl.socket_, bufs, i, flags); int error = socket_ops::get_error(); // Check if operation succeeded. if (bytes_sent >= 0) { error_handler(boost::asio::error(0)); return bytes_sent; } // Operation failed. if ((impl.flags_ & implementation_type::user_set_non_blocking) || (error != boost::asio::error::would_block && error != boost::asio::error::try_again)) { error_handler(boost::asio::error(error)); return 0; } // Wait for socket to become ready. if (socket_ops::poll_write(impl.socket_) < 0) { error_handler(boost::asio::error(socket_ops::get_error())); return 0; } } } template class send_handler { public: send_handler(socket_type socket, boost::asio::io_service& io_service, const Const_Buffers& buffers, socket_base::message_flags flags, Handler handler) : socket_(socket), io_service_(io_service), work_(io_service), buffers_(buffers), flags_(flags), handler_(handler) { } bool operator()(int result) { // Check whether the operation was successful. if (result != 0) { boost::asio::error error(result); io_service_.post(bind_handler(handler_, error, 0)); return true; } // Copy buffers into array. socket_ops::buf bufs[max_buffers]; typename Const_Buffers::const_iterator iter = buffers_.begin(); typename Const_Buffers::const_iterator end = buffers_.end(); size_t i = 0; for (; iter != end && i < max_buffers; ++iter, ++i) { boost::asio::const_buffer buffer(*iter); socket_ops::init_buf(bufs[i], boost::asio::buffer_cast(buffer), boost::asio::buffer_size(buffer)); } // Send the data. int bytes = socket_ops::send(socket_, bufs, i, flags_); boost::asio::error error(bytes < 0 ? socket_ops::get_error() : boost::asio::error::success); // Check if we need to run the operation again. if (error == boost::asio::error::would_block || error == boost::asio::error::try_again) return false; io_service_.post(bind_handler(handler_, error, bytes < 0 ? 0 : bytes)); return true; } private: socket_type socket_; boost::asio::io_service& io_service_; boost::asio::io_service::work work_; Const_Buffers buffers_; socket_base::message_flags flags_; Handler handler_; }; // Start an asynchronous send. The data being sent must be valid for the // lifetime of the asynchronous operation. template void async_send(implementation_type& impl, const Const_Buffers& buffers, socket_base::message_flags flags, Handler handler) { if (impl.socket_ == invalid_socket) { boost::asio::error error(boost::asio::error::bad_descriptor); owner().post(bind_handler(handler, error, 0)); } else { // Make socket non-blocking. if (!(impl.flags_ & implementation_type::internal_non_blocking)) { ioctl_arg_type non_blocking = 1; if (socket_ops::ioctl(impl.socket_, FIONBIO, &non_blocking)) { boost::asio::error error(socket_ops::get_error()); owner().post(bind_handler(handler, error, 0)); return; } impl.flags_ |= implementation_type::internal_non_blocking; } reactor_.start_write_op(impl.socket_, send_handler( impl.socket_, owner(), buffers, flags, handler)); } } // Send a datagram to the specified endpoint. Returns the number of bytes // sent. template size_t send_to(implementation_type& impl, const Const_Buffers& buffers, const endpoint_type& destination, socket_base::message_flags flags, Error_Handler error_handler) { // Copy buffers into array. socket_ops::buf bufs[max_buffers]; typename Const_Buffers::const_iterator iter = buffers.begin(); typename Const_Buffers::const_iterator end = buffers.end(); size_t i = 0; for (; iter != end && i < max_buffers; ++iter, ++i) { boost::asio::const_buffer buffer(*iter); socket_ops::init_buf(bufs[i], boost::asio::buffer_cast(buffer), boost::asio::buffer_size(buffer)); } // Send the data. for (;;) { // Try to complete the operation without blocking. int bytes_sent = socket_ops::sendto(impl.socket_, bufs, i, flags, destination.data(), destination.size()); int error = socket_ops::get_error(); // Check if operation succeeded. if (bytes_sent >= 0) { error_handler(boost::asio::error(0)); return bytes_sent; } // Operation failed. if ((impl.flags_ & implementation_type::user_set_non_blocking) || (error != boost::asio::error::would_block && error != boost::asio::error::try_again)) { error_handler(boost::asio::error(error)); return 0; } // Wait for socket to become ready. if (socket_ops::poll_write(impl.socket_) < 0) { error_handler(boost::asio::error(socket_ops::get_error())); return 0; } } } template class send_to_handler { public: send_to_handler(socket_type socket, boost::asio::io_service& io_service, const Const_Buffers& buffers, const endpoint_type& endpoint, socket_base::message_flags flags, Handler handler) : socket_(socket), io_service_(io_service), work_(io_service), buffers_(buffers), destination_(endpoint), flags_(flags), handler_(handler) { } bool operator()(int result) { // Check whether the operation was successful. if (result != 0) { boost::asio::error error(result); io_service_.post(bind_handler(handler_, error, 0)); return true; } // Copy buffers into array. socket_ops::buf bufs[max_buffers]; typename Const_Buffers::const_iterator iter = buffers_.begin(); typename Const_Buffers::const_iterator end = buffers_.end(); size_t i = 0; for (; iter != end && i < max_buffers; ++iter, ++i) { boost::asio::const_buffer buffer(*iter); socket_ops::init_buf(bufs[i], boost::asio::buffer_cast(buffer), boost::asio::buffer_size(buffer)); } // Send the data. int bytes = socket_ops::sendto(socket_, bufs, i, flags_, destination_.data(), destination_.size()); boost::asio::error error(bytes < 0 ? socket_ops::get_error() : boost::asio::error::success); // Check if we need to run the operation again. if (error == boost::asio::error::would_block || error == boost::asio::error::try_again) return false; io_service_.post(bind_handler(handler_, error, bytes < 0 ? 0 : bytes)); return true; } private: socket_type socket_; boost::asio::io_service& io_service_; boost::asio::io_service::work work_; Const_Buffers buffers_; endpoint_type destination_; socket_base::message_flags flags_; Handler handler_; }; // Start an asynchronous send. The data being sent must be valid for the // lifetime of the asynchronous operation. template void async_send_to(implementation_type& impl, const Const_Buffers& buffers, const endpoint_type& destination, socket_base::message_flags flags, Handler handler) { if (impl.socket_ == invalid_socket) { boost::asio::error error(boost::asio::error::bad_descriptor); owner().post(bind_handler(handler, error, 0)); } else { // Make socket non-blocking. if (!(impl.flags_ & implementation_type::internal_non_blocking)) { ioctl_arg_type non_blocking = 1; if (socket_ops::ioctl(impl.socket_, FIONBIO, &non_blocking)) { boost::asio::error error(socket_ops::get_error()); owner().post(bind_handler(handler, error, 0)); return; } impl.flags_ |= implementation_type::internal_non_blocking; } reactor_.start_write_op(impl.socket_, send_to_handler( impl.socket_, owner(), buffers, destination, flags, handler)); } } // Receive some data from the peer. Returns the number of bytes received. template size_t receive(implementation_type& impl, const Mutable_Buffers& buffers, socket_base::message_flags flags, Error_Handler error_handler) { // Copy buffers into array. socket_ops::buf bufs[max_buffers]; typename Mutable_Buffers::const_iterator iter = buffers.begin(); typename Mutable_Buffers::const_iterator end = buffers.end(); size_t i = 0; for (; iter != end && i < max_buffers; ++iter, ++i) { boost::asio::mutable_buffer buffer(*iter); socket_ops::init_buf(bufs[i], boost::asio::buffer_cast(buffer), boost::asio::buffer_size(buffer)); } // Receive some data. for (;;) { // Try to complete the operation without blocking. int bytes_recvd = socket_ops::recv(impl.socket_, bufs, i, flags); int error = socket_ops::get_error(); // Check if operation succeeded. if (bytes_recvd > 0) { error_handler(boost::asio::error(0)); return bytes_recvd; } // Check for EOF. if (bytes_recvd == 0) { error_handler(boost::asio::error(boost::asio::error::eof)); return 0; } // Operation failed. if ((impl.flags_ & implementation_type::user_set_non_blocking) || (error != boost::asio::error::would_block && error != boost::asio::error::try_again)) { error_handler(boost::asio::error(error)); return 0; } // Wait for socket to become ready. if (socket_ops::poll_read(impl.socket_) < 0) { error_handler(boost::asio::error(socket_ops::get_error())); return 0; } } } template class receive_handler { public: receive_handler(socket_type socket, boost::asio::io_service& io_service, const Mutable_Buffers& buffers, socket_base::message_flags flags, Handler handler) : socket_(socket), io_service_(io_service), work_(io_service), buffers_(buffers), flags_(flags), handler_(handler) { } bool operator()(int result) { // Check whether the operation was successful. if (result != 0) { boost::asio::error error(result); io_service_.post(bind_handler(handler_, error, 0)); return true; } // Copy buffers into array. socket_ops::buf bufs[max_buffers]; typename Mutable_Buffers::const_iterator iter = buffers_.begin(); typename Mutable_Buffers::const_iterator end = buffers_.end(); size_t i = 0; for (; iter != end && i < max_buffers; ++iter, ++i) { boost::asio::mutable_buffer buffer(*iter); socket_ops::init_buf(bufs[i], boost::asio::buffer_cast(buffer), boost::asio::buffer_size(buffer)); } // Receive some data. int bytes = socket_ops::recv(socket_, bufs, i, flags_); int error_code = boost::asio::error::success; if (bytes < 0) error_code = socket_ops::get_error(); else if (bytes == 0) error_code = boost::asio::error::eof; boost::asio::error error(error_code); // Check if we need to run the operation again. if (error == boost::asio::error::would_block || error == boost::asio::error::try_again) return false; io_service_.post(bind_handler(handler_, error, bytes < 0 ? 0 : bytes)); return true; } private: socket_type socket_; boost::asio::io_service& io_service_; boost::asio::io_service::work work_; Mutable_Buffers buffers_; socket_base::message_flags flags_; Handler handler_; }; // Start an asynchronous receive. The buffer for the data being received // must be valid for the lifetime of the asynchronous operation. template void async_receive(implementation_type& impl, const Mutable_Buffers& buffers, socket_base::message_flags flags, Handler handler) { if (impl.socket_ == invalid_socket) { boost::asio::error error(boost::asio::error::bad_descriptor); owner().post(bind_handler(handler, error, 0)); } else { // Make socket non-blocking. if (!(impl.flags_ & implementation_type::internal_non_blocking)) { ioctl_arg_type non_blocking = 1; if (socket_ops::ioctl(impl.socket_, FIONBIO, &non_blocking)) { boost::asio::error error(socket_ops::get_error()); owner().post(bind_handler(handler, error, 0)); return; } impl.flags_ |= implementation_type::internal_non_blocking; } if (flags & socket_base::message_out_of_band) { reactor_.start_except_op(impl.socket_, receive_handler( impl.socket_, owner(), buffers, flags, handler)); } else { reactor_.start_read_op(impl.socket_, receive_handler( impl.socket_, owner(), buffers, flags, handler)); } } } // Receive a datagram with the endpoint of the sender. Returns the number of // bytes received. template size_t receive_from(implementation_type& impl, const Mutable_Buffers& buffers, endpoint_type& sender_endpoint, socket_base::message_flags flags, Error_Handler error_handler) { // Copy buffers into array. socket_ops::buf bufs[max_buffers]; typename Mutable_Buffers::const_iterator iter = buffers.begin(); typename Mutable_Buffers::const_iterator end = buffers.end(); size_t i = 0; for (; iter != end && i < max_buffers; ++iter, ++i) { boost::asio::mutable_buffer buffer(*iter); socket_ops::init_buf(bufs[i], boost::asio::buffer_cast(buffer), boost::asio::buffer_size(buffer)); } // Receive some data. for (;;) { // Try to complete the operation without blocking. socket_addr_len_type addr_len = sender_endpoint.capacity(); int bytes_recvd = socket_ops::recvfrom(impl.socket_, bufs, i, flags, sender_endpoint.data(), &addr_len); int error = socket_ops::get_error(); // Check if operation succeeded. if (bytes_recvd > 0) { sender_endpoint.resize(addr_len); error_handler(boost::asio::error(0)); return bytes_recvd; } // Check for EOF. if (bytes_recvd == 0) { error_handler(boost::asio::error(boost::asio::error::eof)); return 0; } // Operation failed. if ((impl.flags_ & implementation_type::user_set_non_blocking) || (error != boost::asio::error::would_block && error != boost::asio::error::try_again)) { error_handler(boost::asio::error(error)); return 0; } // Wait for socket to become ready. if (socket_ops::poll_read(impl.socket_) < 0) { error_handler(boost::asio::error(socket_ops::get_error())); return 0; } } } template class receive_from_handler { public: receive_from_handler(socket_type socket, boost::asio::io_service& io_service, const Mutable_Buffers& buffers, endpoint_type& endpoint, socket_base::message_flags flags, Handler handler) : socket_(socket), io_service_(io_service), work_(io_service), buffers_(buffers), sender_endpoint_(endpoint), flags_(flags), handler_(handler) { } bool operator()(int result) { // Check whether the operation was successful. if (result != 0) { boost::asio::error error(result); io_service_.post(bind_handler(handler_, error, 0)); return true; } // Copy buffers into array. socket_ops::buf bufs[max_buffers]; typename Mutable_Buffers::const_iterator iter = buffers_.begin(); typename Mutable_Buffers::const_iterator end = buffers_.end(); size_t i = 0; for (; iter != end && i < max_buffers; ++iter, ++i) { boost::asio::mutable_buffer buffer(*iter); socket_ops::init_buf(bufs[i], boost::asio::buffer_cast(buffer), boost::asio::buffer_size(buffer)); } // Receive some data. socket_addr_len_type addr_len = sender_endpoint_.capacity(); int bytes = socket_ops::recvfrom(socket_, bufs, i, flags_, sender_endpoint_.data(), &addr_len); int error_code = boost::asio::error::success; if (bytes < 0) error_code = socket_ops::get_error(); else if (bytes == 0) error_code = boost::asio::error::eof; boost::asio::error error(error_code); // Check if we need to run the operation again. if (error == boost::asio::error::would_block || error == boost::asio::error::try_again) return false; sender_endpoint_.resize(addr_len); io_service_.post(bind_handler(handler_, error, bytes < 0 ? 0 : bytes)); return true; } private: socket_type socket_; boost::asio::io_service& io_service_; boost::asio::io_service::work work_; Mutable_Buffers buffers_; endpoint_type& sender_endpoint_; socket_base::message_flags flags_; Handler handler_; }; // Start an asynchronous receive. The buffer for the data being received and // the sender_endpoint object must both be valid for the lifetime of the // asynchronous operation. template void async_receive_from(implementation_type& impl, const Mutable_Buffers& buffers, endpoint_type& sender_endpoint, socket_base::message_flags flags, Handler handler) { if (impl.socket_ == invalid_socket) { boost::asio::error error(boost::asio::error::bad_descriptor); owner().post(bind_handler(handler, error, 0)); } else { // Make socket non-blocking. if (!(impl.flags_ & implementation_type::internal_non_blocking)) { ioctl_arg_type non_blocking = 1; if (socket_ops::ioctl(impl.socket_, FIONBIO, &non_blocking)) { boost::asio::error error(socket_ops::get_error()); owner().post(bind_handler(handler, error, 0)); return; } impl.flags_ |= implementation_type::internal_non_blocking; } reactor_.start_read_op(impl.socket_, receive_from_handler( impl.socket_, owner(), buffers, sender_endpoint, flags, handler)); } } // Accept a new connection. template void accept(implementation_type& impl, Socket& peer, Error_Handler error_handler) { // We cannot accept a socket that is already open. if (peer.native() != invalid_socket) { error_handler(boost::asio::error(boost::asio::error::already_connected)); return; } // Accept a socket. for (;;) { // Try to complete the operation without blocking. socket_holder new_socket(socket_ops::accept(impl.socket_, 0, 0)); int error = socket_ops::get_error(); // Check if operation succeeded. if (new_socket.get() >= 0) { boost::asio::error temp_error; peer.assign(impl.protocol_, new_socket.get(), boost::asio::assign_error(temp_error)); if (temp_error) { error_handler(temp_error); } else { new_socket.release(); error_handler(boost::asio::error(0)); } return; } // Operation failed. if (error == boost::asio::error::would_block || error == boost::asio::error::try_again) { if (impl.flags_ & implementation_type::user_set_non_blocking) { error_handler(boost::asio::error(error)); return; } // Fall through to retry operation. } else if (error == boost::asio::error::connection_aborted) { if (impl.flags_ & implementation_type::enable_connection_aborted) { error_handler(boost::asio::error(error)); return; } // Fall through to retry operation. } else { error_handler(boost::asio::error(error)); return; } // Wait for socket to become ready. if (socket_ops::poll_read(impl.socket_) < 0) { error_handler(boost::asio::error(socket_ops::get_error())); return; } } } // Accept a new connection. template void accept_endpoint(implementation_type& impl, Socket& peer, endpoint_type& peer_endpoint, Error_Handler error_handler) { // We cannot accept a socket that is already open. if (peer.native() != invalid_socket) { error_handler(boost::asio::error(boost::asio::error::already_connected)); return; } if (int err = socket_ops::get_error()) { error_handler(boost::asio::error(err)); return; } // Accept a socket. for (;;) { // Try to complete the operation without blocking. socket_addr_len_type addr_len = peer_endpoint.capacity(); socket_holder new_socket(socket_ops::accept( impl.socket_, peer_endpoint.data(), &addr_len)); int error = socket_ops::get_error(); // Check if operation succeeded. if (new_socket.get() >= 0) { peer_endpoint.resize(addr_len); boost::asio::error temp_error; peer.assign(impl.protocol_, new_socket.get(), boost::asio::assign_error(temp_error)); if (temp_error) { error_handler(temp_error); } else { new_socket.release(); error_handler(boost::asio::error(0)); } return; } // Operation failed. if (error == boost::asio::error::would_block || error == boost::asio::error::try_again) { if (impl.flags_ & implementation_type::user_set_non_blocking) { error_handler(boost::asio::error(error)); return; } // Fall through to retry operation. } else if (error == boost::asio::error::connection_aborted) { if (impl.flags_ & implementation_type::enable_connection_aborted) { error_handler(boost::asio::error(error)); return; } // Fall through to retry operation. } else { error_handler(boost::asio::error(error)); return; } // Wait for socket to become ready. if (socket_ops::poll_read(impl.socket_) < 0) { error_handler(boost::asio::error(socket_ops::get_error())); return; } } } template class accept_handler { public: accept_handler(socket_type socket, boost::asio::io_service& io_service, Socket& peer, const protocol_type& protocol, bool enable_connection_aborted, Handler handler) : socket_(socket), io_service_(io_service), work_(io_service), peer_(peer), protocol_(protocol), enable_connection_aborted_(enable_connection_aborted), handler_(handler) { } bool operator()(int result) { // Check whether the operation was successful. if (result != 0) { boost::asio::error error(result); io_service_.post(bind_handler(handler_, error)); return true; } // Accept the waiting connection. socket_holder new_socket(socket_ops::accept(socket_, 0, 0)); boost::asio::error error(new_socket.get() == invalid_socket ? socket_ops::get_error() : boost::asio::error::success); // Check if we need to run the operation again. if (error == boost::asio::error::would_block || error == boost::asio::error::try_again) return false; if (error == boost::asio::error::connection_aborted && !enable_connection_aborted_) return false; // Transfer ownership of the new socket to the peer object. if (!error) { peer_.assign(protocol_, new_socket.get(), boost::asio::assign_error(error)); if (!error) new_socket.release(); } io_service_.post(bind_handler(handler_, error)); return true; } private: socket_type socket_; boost::asio::io_service& io_service_; boost::asio::io_service::work work_; Socket& peer_; protocol_type protocol_; bool enable_connection_aborted_; Handler handler_; }; // Start an asynchronous accept. The peer object must be valid until the // accept's handler is invoked. template void async_accept(implementation_type& impl, Socket& peer, Handler handler) { if (impl.socket_ == invalid_socket) { boost::asio::error error(boost::asio::error::bad_descriptor); owner().post(bind_handler(handler, error)); } else if (peer.native() != invalid_socket) { boost::asio::error error(boost::asio::error::already_connected); owner().post(bind_handler(handler, error)); } else { // Make socket non-blocking. if (!(impl.flags_ & implementation_type::internal_non_blocking)) { ioctl_arg_type non_blocking = 1; if (socket_ops::ioctl(impl.socket_, FIONBIO, &non_blocking)) { boost::asio::error error(socket_ops::get_error()); owner().post(bind_handler(handler, error)); return; } impl.flags_ |= implementation_type::internal_non_blocking; } reactor_.start_read_op(impl.socket_, accept_handler( impl.socket_, owner(), peer, impl.protocol_, (impl.flags_ & implementation_type::enable_connection_aborted) != 0, handler)); } } template class accept_endp_handler { public: accept_endp_handler(socket_type socket, boost::asio::io_service& io_service, Socket& peer, endpoint_type& peer_endpoint, bool enable_connection_aborted, Handler handler) : socket_(socket), io_service_(io_service), work_(io_service), peer_(peer), peer_endpoint_(peer_endpoint), enable_connection_aborted_(enable_connection_aborted), handler_(handler) { } bool operator()(int result) { // Check whether the operation was successful. if (result != 0) { boost::asio::error error(result); io_service_.post(bind_handler(handler_, error)); return true; } // Accept the waiting connection. socket_addr_len_type addr_len = peer_endpoint_.capacity(); socket_holder new_socket(socket_ops::accept( socket_, peer_endpoint_.data(), &addr_len)); boost::asio::error error(new_socket.get() == invalid_socket ? socket_ops::get_error() : boost::asio::error::success); // Check if we need to run the operation again. if (error == boost::asio::error::would_block || error == boost::asio::error::try_again) return false; if (error == boost::asio::error::connection_aborted && !enable_connection_aborted_) return false; // Transfer ownership of the new socket to the peer object. if (!error) { peer_endpoint_.resize(addr_len); peer_.assign(peer_endpoint_.protocol(), new_socket.get(), boost::asio::assign_error(error)); if (!error) new_socket.release(); } io_service_.post(bind_handler(handler_, error)); return true; } private: socket_type socket_; boost::asio::io_service& io_service_; boost::asio::io_service::work work_; Socket& peer_; endpoint_type& peer_endpoint_; bool enable_connection_aborted_; Handler handler_; }; // Start an asynchronous accept. The peer and peer_endpoint objects // must be valid until the accept's handler is invoked. template void async_accept_endpoint(implementation_type& impl, Socket& peer, endpoint_type& peer_endpoint, Handler handler) { if (impl.socket_ == invalid_socket) { boost::asio::error error(boost::asio::error::bad_descriptor); owner().post(bind_handler(handler, error)); } else if (peer.native() != invalid_socket) { boost::asio::error error(boost::asio::error::already_connected); owner().post(bind_handler(handler, error)); } else { // Make socket non-blocking. if (!(impl.flags_ & implementation_type::internal_non_blocking)) { ioctl_arg_type non_blocking = 1; if (socket_ops::ioctl(impl.socket_, FIONBIO, &non_blocking)) { boost::asio::error error(socket_ops::get_error()); owner().post(bind_handler(handler, error)); return; } impl.flags_ |= implementation_type::internal_non_blocking; } reactor_.start_read_op(impl.socket_, accept_endp_handler( impl.socket_, owner(), peer, peer_endpoint, (impl.flags_ & implementation_type::enable_connection_aborted) != 0, handler)); } } // Connect the socket to the specified endpoint. template void connect(implementation_type& impl, const endpoint_type& peer_endpoint, Error_Handler error_handler) { // Open the socket if it is not already open. if (impl.socket_ == invalid_socket) { // Get the flags used to create the new socket. int family = peer_endpoint.protocol().family(); int type = peer_endpoint.protocol().type(); int proto = peer_endpoint.protocol().protocol(); // Create a new socket. impl.socket_ = socket_ops::socket(family, type, proto); if (impl.socket_ == invalid_socket) { error_handler(boost::asio::error(socket_ops::get_error())); return; } // Register the socket with the reactor. if (int err = reactor_.register_descriptor(impl.socket_)) { socket_ops::close(impl.socket_); error_handler(boost::asio::error(err)); return; } } else if (impl.flags_ & implementation_type::internal_non_blocking) { // Mark the socket as blocking while we perform the connect. ioctl_arg_type non_blocking = 0; if (socket_ops::ioctl(impl.socket_, FIONBIO, &non_blocking)) { error_handler(boost::asio::error(socket_ops::get_error())); return; } impl.flags_ &= ~implementation_type::internal_non_blocking; } // Perform the connect operation. int result = socket_ops::connect(impl.socket_, peer_endpoint.data(), peer_endpoint.size()); if (result == socket_error_retval) error_handler(boost::asio::error(socket_ops::get_error())); else error_handler(boost::asio::error(0)); } template class connect_handler { public: connect_handler(socket_type socket, boost::shared_ptr completed, boost::asio::io_service& io_service, Reactor& reactor, Handler handler) : socket_(socket), completed_(completed), io_service_(io_service), work_(io_service), reactor_(reactor), handler_(handler) { } bool operator()(int result) { // Check whether a handler has already been called for the connection. // If it has, then we don't want to do anything in this handler. if (*completed_) return true; // Cancel the other reactor operation for the connection. *completed_ = true; reactor_.enqueue_cancel_ops_unlocked(socket_); // Check whether the operation was successful. if (result != 0) { boost::asio::error error(result); io_service_.post(bind_handler(handler_, error)); return true; } // Get the error code from the connect operation. int connect_error = 0; size_t connect_error_len = sizeof(connect_error); if (socket_ops::getsockopt(socket_, SOL_SOCKET, SO_ERROR, &connect_error, &connect_error_len) == socket_error_retval) { boost::asio::error error(socket_ops::get_error()); io_service_.post(bind_handler(handler_, error)); return true; } // If connection failed then post the handler with the error code. if (connect_error) { boost::asio::error error(connect_error); io_service_.post(bind_handler(handler_, error)); return true; } // Post the result of the successful connection operation. boost::asio::error error(boost::asio::error::success); io_service_.post(bind_handler(handler_, error)); return true; } private: socket_type socket_; boost::shared_ptr completed_; boost::asio::io_service& io_service_; boost::asio::io_service::work work_; Reactor& reactor_; Handler handler_; }; // Start an asynchronous connect. template void async_connect(implementation_type& impl, const endpoint_type& peer_endpoint, Handler handler) { // Open the socket if it is not already open. if (impl.socket_ == invalid_socket) { // Get the flags used to create the new socket. int family = peer_endpoint.protocol().family(); int type = peer_endpoint.protocol().type(); int proto = peer_endpoint.protocol().protocol(); // Create a new socket. impl.socket_ = socket_ops::socket(family, type, proto); if (impl.socket_ == invalid_socket) { boost::asio::error error(socket_ops::get_error()); owner().post(bind_handler(handler, error)); return; } // Register the socket with the reactor. if (int err = reactor_.register_descriptor(impl.socket_)) { socket_ops::close(impl.socket_); boost::asio::error error(err); owner().post(bind_handler(handler, error)); return; } } // Make socket non-blocking. if (!(impl.flags_ & implementation_type::internal_non_blocking)) { ioctl_arg_type non_blocking = 1; if (socket_ops::ioctl(impl.socket_, FIONBIO, &non_blocking)) { boost::asio::error error(socket_ops::get_error()); owner().post(bind_handler(handler, error)); return; } impl.flags_ |= implementation_type::internal_non_blocking; } // Start the connect operation. The socket is already marked as non-blocking // so the connection will take place asynchronously. if (socket_ops::connect(impl.socket_, peer_endpoint.data(), peer_endpoint.size()) == 0) { // The connect operation has finished successfully so we need to post the // handler immediately. boost::asio::error error(boost::asio::error::success); owner().post(bind_handler(handler, error)); } else if (socket_ops::get_error() == boost::asio::error::in_progress || socket_ops::get_error() == boost::asio::error::would_block) { // The connection is happening in the background, and we need to wait // until the socket becomes writeable. boost::shared_ptr completed(new bool(false)); reactor_.start_write_and_except_ops(impl.socket_, connect_handler( impl.socket_, completed, owner(), reactor_, handler)); } else { // The connect operation has failed, so post the handler immediately. boost::asio::error error(socket_ops::get_error()); owner().post(bind_handler(handler, error)); } } private: // The selector that performs event demultiplexing for the provider. Reactor& reactor_; }; } // namespace detail } // namespace asio } // namespace boost #include #endif // BOOST_ASIO_DETAIL_REACTIVE_SOCKET_SERVICE_HPP