// // win_iocp_socket_service.hpp // ~~~~~~~~~~~~~~~~~~~~~~~~~~~ // // Copyright (c) 2003-2006 Christopher M. Kohlhoff (chris at kohlhoff dot com) // // Distributed under the Boost Software License, Version 1.0. (See accompanying // file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt) // #ifndef BOOST_ASIO_DETAIL_WIN_IOCP_SOCKET_SERVICE_HPP #define BOOST_ASIO_DETAIL_WIN_IOCP_SOCKET_SERVICE_HPP #if defined(_MSC_VER) && (_MSC_VER >= 1200) # pragma once #endif // defined(_MSC_VER) && (_MSC_VER >= 1200) #include #include #if defined(BOOST_ASIO_HAS_IOCP) #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include namespace boost { namespace asio { namespace detail { template class win_iocp_socket_service : public boost::asio::io_service::service { public: // The protocol type. typedef Protocol protocol_type; // The endpoint type. typedef typename Protocol::endpoint endpoint_type; // Base class for all operations. typedef win_iocp_operation operation; struct noop_deleter { void operator()(void*) {} }; typedef boost::shared_ptr shared_cancel_token_type; typedef boost::weak_ptr weak_cancel_token_type; // The native type of a socket. typedef socket_type native_type; // The implementation type of the socket. class implementation_type { public: // Default constructor. implementation_type() : socket_(invalid_socket), flags_(0), cancel_token_(), protocol_(endpoint_type().protocol()), next_(0), prev_(0) { } private: // Only this service will have access to the internal values. friend class win_iocp_socket_service; // The native socket representation. socket_type socket_; enum { enable_connection_aborted = 1 // User wants connection_aborted errors. }; // Flags indicating the current state of the socket. unsigned char flags_; // We use a shared pointer as a cancellation token here to work around the // broken Windows support for cancellation. MSDN says that when you call // closesocket any outstanding WSARecv or WSASend operations will complete // with the error ERROR_OPERATION_ABORTED. In practice they complete with // ERROR_NETNAME_DELETED, which means you can't tell the difference between // a local cancellation and the socket being hard-closed by the peer. shared_cancel_token_type cancel_token_; // The protocol associated with the socket. protocol_type protocol_; // Pointers to adjacent socket implementations in linked list. implementation_type* next_; implementation_type* prev_; }; // The type of the reactor used for connect operations. typedef detail::select_reactor reactor_type; // The maximum number of buffers to support in a single operation. enum { max_buffers = 16 }; // Constructor. win_iocp_socket_service(boost::asio::io_service& io_service) : boost::asio::io_service::service(io_service), iocp_service_(boost::asio::use_service(io_service)), reactor_(0), mutex_(), impl_list_(0) { } // Destroy all user-defined handler objects owned by the service. void shutdown_service() { // Close all implementations, causing all operations to complete. boost::asio::detail::mutex::scoped_lock lock(mutex_); implementation_type* impl = impl_list_; while (impl) { close(*impl, boost::asio::ignore_error()); impl = impl->next_; } } // Construct a new socket implementation. void construct(implementation_type& impl) { impl.socket_ = invalid_socket; impl.cancel_token_.reset(); // Insert implementation into linked list of all implementations. boost::asio::detail::mutex::scoped_lock lock(mutex_); impl.next_ = impl_list_; impl.prev_ = 0; if (impl_list_) impl_list_->prev_ = &impl; impl_list_ = &impl; } // Destroy a socket implementation. void destroy(implementation_type& impl) { close(impl, boost::asio::ignore_error()); // Remove implementation from linked list of all implementations. boost::asio::detail::mutex::scoped_lock lock(mutex_); if (impl_list_ == &impl) impl_list_ = impl.next_; if (impl.prev_) impl.prev_->next_ = impl.next_; if (impl.next_) impl.next_->prev_= impl.prev_; impl.next_ = 0; impl.prev_ = 0; } // Open a new socket implementation. template void open(implementation_type& impl, const protocol_type& protocol, Error_Handler error_handler) { close(impl, boost::asio::ignore_error()); socket_holder sock(socket_ops::socket(protocol.family(), protocol.type(), protocol.protocol())); if (sock.get() == invalid_socket) { error_handler(boost::asio::error(socket_ops::get_error())); return; } iocp_service_.register_socket(sock.get()); impl.socket_ = sock.release(); impl.cancel_token_.reset(static_cast(0), noop_deleter()); impl.protocol_ = protocol; error_handler(boost::asio::error(0)); } // Assign a native socket to a socket implementation. template void assign(implementation_type& impl, const protocol_type& protocol, const native_type& native_socket, Error_Handler error_handler) { close(impl, boost::asio::ignore_error()); iocp_service_.register_socket(native_socket); impl.socket_ = native_socket; impl.cancel_token_.reset(static_cast(0), noop_deleter()); impl.protocol_ = protocol; error_handler(boost::asio::error(0)); } // Destroy a socket implementation. template void close(implementation_type& impl, Error_Handler error_handler) { if (impl.socket_ != invalid_socket) { // Check if the reactor was created, in which case we need to close the // socket on the reactor as well to cancel any operations that might be // running there. reactor_type* reactor = static_cast( interlocked_compare_exchange_pointer( reinterpret_cast(&reactor_), 0, 0)); if (reactor) reactor->close_descriptor(impl.socket_); if (socket_ops::close(impl.socket_) == socket_error_retval) { error_handler(boost::asio::error(socket_ops::get_error())); return; } else { impl.socket_ = invalid_socket; impl.cancel_token_.reset(); } } error_handler(boost::asio::error(0)); } // Get the native socket representation. native_type native(implementation_type& impl) { return impl.socket_; } // Bind the socket to the specified local endpoint. template void bind(implementation_type& impl, const endpoint_type& endpoint, Error_Handler error_handler) { if (socket_ops::bind(impl.socket_, endpoint.data(), endpoint.size()) == socket_error_retval) error_handler(boost::asio::error(socket_ops::get_error())); else error_handler(boost::asio::error(0)); } // Place the socket into the state where it will listen for new connections. template void listen(implementation_type& impl, int backlog, Error_Handler error_handler) { if (backlog == 0) backlog = SOMAXCONN; if (socket_ops::listen(impl.socket_, backlog) == socket_error_retval) error_handler(boost::asio::error(socket_ops::get_error())); else error_handler(boost::asio::error(0)); } // Set a socket option. template void set_option(implementation_type& impl, const Option& option, Error_Handler error_handler) { if (option.level(impl.protocol_) == custom_socket_option_level && option.name(impl.protocol_) == enable_connection_aborted_option) { if (option.size(impl.protocol_) != sizeof(int)) { error_handler(boost::asio::error(boost::asio::error::invalid_argument)); } else { if (*static_cast(option.data(impl.protocol_))) impl.flags_ |= implementation_type::enable_connection_aborted; else impl.flags_ &= ~implementation_type::enable_connection_aborted; error_handler(boost::asio::error(0)); } } else { if (socket_ops::setsockopt(impl.socket_, option.level(impl.protocol_), option.name(impl.protocol_), option.data(impl.protocol_), option.size(impl.protocol_))) error_handler(boost::asio::error(socket_ops::get_error())); else error_handler(boost::asio::error(0)); } } // Set a socket option. template void get_option(const implementation_type& impl, Option& option, Error_Handler error_handler) const { if (option.level(impl.protocol_) == custom_socket_option_level && option.name(impl.protocol_) == enable_connection_aborted_option) { if (option.size(impl.protocol_) != sizeof(int)) { error_handler(boost::asio::error(boost::asio::error::invalid_argument)); } else { int* target = static_cast(option.data(impl.protocol_)); if (impl.flags_ & implementation_type::enable_connection_aborted) *target = 1; else *target = 0; error_handler(boost::asio::error(0)); } } else { size_t size = option.size(impl.protocol_); if (socket_ops::getsockopt(impl.socket_, option.level(impl.protocol_), option.name(impl.protocol_), option.data(impl.protocol_), &size)) error_handler(boost::asio::error(socket_ops::get_error())); else error_handler(boost::asio::error(0)); } } // Perform an IO control command on the socket. template void io_control(implementation_type& impl, IO_Control_Command& command, Error_Handler error_handler) { if (socket_ops::ioctl(impl.socket_, command.name(), static_cast(command.data()))) error_handler(boost::asio::error(socket_ops::get_error())); else error_handler(boost::asio::error(0)); } // Get the local endpoint. template void get_local_endpoint(const implementation_type& impl, endpoint_type& endpoint, Error_Handler error_handler) const { socket_addr_len_type addr_len = endpoint.capacity(); if (socket_ops::getsockname(impl.socket_, endpoint.data(), &addr_len)) { error_handler(boost::asio::error(socket_ops::get_error())); return; } endpoint.resize(addr_len); error_handler(boost::asio::error(0)); } // Get the remote endpoint. template void get_remote_endpoint(const implementation_type& impl, endpoint_type& endpoint, Error_Handler error_handler) const { socket_addr_len_type addr_len = endpoint.capacity(); if (socket_ops::getpeername(impl.socket_, endpoint.data(), &addr_len)) { error_handler(boost::asio::error(socket_ops::get_error())); return; } endpoint.resize(addr_len); error_handler(boost::asio::error(0)); } /// Disable sends or receives on the socket. template void shutdown(implementation_type& impl, socket_base::shutdown_type what, Error_Handler error_handler) { if (socket_ops::shutdown(impl.socket_, what) != 0) error_handler(boost::asio::error(socket_ops::get_error())); else error_handler(boost::asio::error(0)); } // Send the given data to the peer. Returns the number of bytes sent. template size_t send(implementation_type& impl, const Const_Buffers& buffers, socket_base::message_flags flags, Error_Handler error_handler) { // Copy buffers into WSABUF array. ::WSABUF bufs[max_buffers]; typename Const_Buffers::const_iterator iter = buffers.begin(); typename Const_Buffers::const_iterator end = buffers.end(); DWORD i = 0; for (; iter != end && i < max_buffers; ++iter, ++i) { boost::asio::const_buffer buffer(*iter); bufs[i].len = static_cast(boost::asio::buffer_size(buffer)); bufs[i].buf = const_cast( boost::asio::buffer_cast(buffer)); } // Send the data. DWORD bytes_transferred = 0; int result = ::WSASend(impl.socket_, bufs, i, &bytes_transferred, flags, 0, 0); if (result != 0) { DWORD last_error = ::WSAGetLastError(); if (last_error == ERROR_NETNAME_DELETED) last_error = WSAECONNRESET; error_handler(boost::asio::error(last_error)); return 0; } error_handler(boost::asio::error(0)); return bytes_transferred; } template class send_operation : public operation { public: send_operation(boost::asio::io_service& io_service, weak_cancel_token_type cancel_token, const Const_Buffers& buffers, Handler handler) : operation( &send_operation::do_completion_impl, &send_operation::destroy_impl), work_(io_service), cancel_token_(cancel_token), buffers_(buffers), handler_(handler) { } private: static void do_completion_impl(operation* op, DWORD last_error, size_t bytes_transferred) { // Take ownership of the operation object. typedef send_operation op_type; op_type* handler_op(static_cast(op)); typedef handler_alloc_traits alloc_traits; handler_ptr ptr(handler_op->handler_, handler_op); // Map ERROR_NETNAME_DELETED to more useful error. if (last_error == ERROR_NETNAME_DELETED) { if (handler_op->cancel_token_.expired()) last_error = ERROR_OPERATION_ABORTED; else last_error = WSAECONNRESET; } // Make a copy of the handler so that the memory can be deallocated before // the upcall is made. Handler handler(handler_op->handler_); // Free the memory associated with the handler. ptr.reset(); // Call the handler. boost::asio::error error(last_error); handler(error, bytes_transferred); } static void destroy_impl(operation* op) { // Take ownership of the operation object. typedef send_operation op_type; op_type* handler_op(static_cast(op)); typedef handler_alloc_traits alloc_traits; handler_ptr ptr(handler_op->handler_, handler_op); } boost::asio::io_service::work work_; weak_cancel_token_type cancel_token_; Const_Buffers buffers_; Handler handler_; }; // Start an asynchronous send. The data being sent must be valid for the // lifetime of the asynchronous operation. template void async_send(implementation_type& impl, const Const_Buffers& buffers, socket_base::message_flags flags, Handler handler) { // Allocate and construct an operation to wrap the handler. typedef send_operation value_type; typedef handler_alloc_traits alloc_traits; raw_handler_ptr raw_ptr(handler); handler_ptr ptr(raw_ptr, owner(), impl.cancel_token_, buffers, handler); // Copy buffers into WSABUF array. ::WSABUF bufs[max_buffers]; typename Const_Buffers::const_iterator iter = buffers.begin(); typename Const_Buffers::const_iterator end = buffers.end(); DWORD i = 0; for (; iter != end && i < max_buffers; ++iter, ++i) { boost::asio::const_buffer buffer(*iter); bufs[i].len = static_cast(boost::asio::buffer_size(buffer)); bufs[i].buf = const_cast( boost::asio::buffer_cast(buffer)); } // Send the data. DWORD bytes_transferred = 0; int result = ::WSASend(impl.socket_, bufs, i, &bytes_transferred, flags, ptr.get(), 0); DWORD last_error = ::WSAGetLastError(); // Check if the operation completed immediately. if (result != 0 && last_error != WSA_IO_PENDING) { ptr.reset(); boost::asio::error error(last_error); iocp_service_.post(bind_handler(handler, error, bytes_transferred)); } else { ptr.release(); } } // Send a datagram to the specified endpoint. Returns the number of bytes // sent. template size_t send_to(implementation_type& impl, const Const_Buffers& buffers, const endpoint_type& destination, socket_base::message_flags flags, Error_Handler error_handler) { // Copy buffers into WSABUF array. ::WSABUF bufs[max_buffers]; typename Const_Buffers::const_iterator iter = buffers.begin(); typename Const_Buffers::const_iterator end = buffers.end(); DWORD i = 0; for (; iter != end && i < max_buffers; ++iter, ++i) { boost::asio::const_buffer buffer(*iter); bufs[i].len = static_cast(boost::asio::buffer_size(buffer)); bufs[i].buf = const_cast( boost::asio::buffer_cast(buffer)); } // Send the data. DWORD bytes_transferred = 0; int result = ::WSASendTo(impl.socket_, bufs, i, &bytes_transferred, flags, destination.data(), destination.size(), 0, 0); if (result != 0) { DWORD last_error = ::WSAGetLastError(); error_handler(boost::asio::error(last_error)); return 0; } error_handler(boost::asio::error(0)); return bytes_transferred; } template class send_to_operation : public operation { public: send_to_operation(boost::asio::io_service& io_service, const Const_Buffers& buffers, Handler handler) : operation( &send_to_operation::do_completion_impl, &send_to_operation::destroy_impl), work_(io_service), buffers_(buffers), handler_(handler) { } private: static void do_completion_impl(operation* op, DWORD last_error, size_t bytes_transferred) { // Take ownership of the operation object. typedef send_to_operation op_type; op_type* handler_op(static_cast(op)); typedef handler_alloc_traits alloc_traits; handler_ptr ptr(handler_op->handler_, handler_op); // Make a copy of the handler so that the memory can be deallocated before // the upcall is made. Handler handler(handler_op->handler_); // Free the memory associated with the handler. ptr.reset(); // Call the handler. boost::asio::error error(last_error); handler(error, bytes_transferred); } static void destroy_impl(operation* op) { // Take ownership of the operation object. typedef send_to_operation op_type; op_type* handler_op(static_cast(op)); typedef handler_alloc_traits alloc_traits; handler_ptr ptr(handler_op->handler_, handler_op); } boost::asio::io_service::work work_; Const_Buffers buffers_; Handler handler_; }; // Start an asynchronous send. The data being sent must be valid for the // lifetime of the asynchronous operation. template void async_send_to(implementation_type& impl, const Const_Buffers& buffers, const endpoint_type& destination, socket_base::message_flags flags, Handler handler) { // Allocate and construct an operation to wrap the handler. typedef send_to_operation value_type; typedef handler_alloc_traits alloc_traits; raw_handler_ptr raw_ptr(handler); handler_ptr ptr(raw_ptr, owner(), buffers, handler); // Copy buffers into WSABUF array. ::WSABUF bufs[max_buffers]; typename Const_Buffers::const_iterator iter = buffers.begin(); typename Const_Buffers::const_iterator end = buffers.end(); DWORD i = 0; for (; iter != end && i < max_buffers; ++iter, ++i) { boost::asio::const_buffer buffer(*iter); bufs[i].len = static_cast(boost::asio::buffer_size(buffer)); bufs[i].buf = const_cast( boost::asio::buffer_cast(buffer)); } // Send the data. DWORD bytes_transferred = 0; int result = ::WSASendTo(impl.socket_, bufs, i, &bytes_transferred, flags, destination.data(), destination.size(), ptr.get(), 0); DWORD last_error = ::WSAGetLastError(); // Check if the operation completed immediately. if (result != 0 && last_error != WSA_IO_PENDING) { ptr.reset(); boost::asio::error error(last_error); iocp_service_.post(bind_handler(handler, error, bytes_transferred)); } else { ptr.release(); } } // Receive some data from the peer. Returns the number of bytes received. template size_t receive(implementation_type& impl, const Mutable_Buffers& buffers, socket_base::message_flags flags, Error_Handler error_handler) { // Copy buffers into WSABUF array. ::WSABUF bufs[max_buffers]; typename Mutable_Buffers::const_iterator iter = buffers.begin(); typename Mutable_Buffers::const_iterator end = buffers.end(); DWORD i = 0; for (; iter != end && i < max_buffers; ++iter, ++i) { boost::asio::mutable_buffer buffer(*iter); bufs[i].len = static_cast(boost::asio::buffer_size(buffer)); bufs[i].buf = boost::asio::buffer_cast(buffer); } // Receive some data. DWORD bytes_transferred = 0; DWORD recv_flags = flags; int result = ::WSARecv(impl.socket_, bufs, i, &bytes_transferred, &recv_flags, 0, 0); if (result != 0) { DWORD last_error = ::WSAGetLastError(); if (last_error == ERROR_NETNAME_DELETED) last_error = WSAECONNRESET; error_handler(boost::asio::error(last_error)); return 0; } if (bytes_transferred == 0) { error_handler(boost::asio::error(boost::asio::error::eof)); return 0; } error_handler(boost::asio::error(0)); return bytes_transferred; } template class receive_operation : public operation { public: receive_operation(boost::asio::io_service& io_service, weak_cancel_token_type cancel_token, const Mutable_Buffers& buffers, Handler handler) : operation( &receive_operation::do_completion_impl, &receive_operation::destroy_impl), work_(io_service), cancel_token_(cancel_token), buffers_(buffers), handler_(handler) { } private: static void do_completion_impl(operation* op, DWORD last_error, size_t bytes_transferred) { // Take ownership of the operation object. typedef receive_operation op_type; op_type* handler_op(static_cast(op)); typedef handler_alloc_traits alloc_traits; handler_ptr ptr(handler_op->handler_, handler_op); // Map ERROR_NETNAME_DELETED to more useful error. if (last_error == ERROR_NETNAME_DELETED) { if (handler_op->cancel_token_.expired()) last_error = ERROR_OPERATION_ABORTED; else last_error = WSAECONNRESET; } // Check for connection closed. else if (last_error == 0 && bytes_transferred == 0) { last_error = boost::asio::error::eof; } // Make a copy of the handler so that the memory can be deallocated before // the upcall is made. Handler handler(handler_op->handler_); // Free the memory associated with the handler. ptr.reset(); // Call the handler. boost::asio::error error(last_error); handler(error, bytes_transferred); } static void destroy_impl(operation* op) { // Take ownership of the operation object. typedef receive_operation op_type; op_type* handler_op(static_cast(op)); typedef handler_alloc_traits alloc_traits; handler_ptr ptr(handler_op->handler_, handler_op); } boost::asio::io_service::work work_; weak_cancel_token_type cancel_token_; Mutable_Buffers buffers_; Handler handler_; }; // Start an asynchronous receive. The buffer for the data being received // must be valid for the lifetime of the asynchronous operation. template void async_receive(implementation_type& impl, const Mutable_Buffers& buffers, socket_base::message_flags flags, Handler handler) { // Allocate and construct an operation to wrap the handler. typedef receive_operation value_type; typedef handler_alloc_traits alloc_traits; raw_handler_ptr raw_ptr(handler); handler_ptr ptr(raw_ptr, owner(), impl.cancel_token_, buffers, handler); // Copy buffers into WSABUF array. ::WSABUF bufs[max_buffers]; typename Mutable_Buffers::const_iterator iter = buffers.begin(); typename Mutable_Buffers::const_iterator end = buffers.end(); DWORD i = 0; for (; iter != end && i < max_buffers; ++iter, ++i) { boost::asio::mutable_buffer buffer(*iter); bufs[i].len = static_cast(boost::asio::buffer_size(buffer)); bufs[i].buf = boost::asio::buffer_cast(buffer); } // Receive some data. DWORD bytes_transferred = 0; DWORD recv_flags = flags; int result = ::WSARecv(impl.socket_, bufs, i, &bytes_transferred, &recv_flags, ptr.get(), 0); DWORD last_error = ::WSAGetLastError(); if (result != 0 && last_error != WSA_IO_PENDING) { ptr.reset(); boost::asio::error error(last_error); iocp_service_.post(bind_handler(handler, error, bytes_transferred)); } else { ptr.release(); } } // Receive a datagram with the endpoint of the sender. Returns the number of // bytes received. template size_t receive_from(implementation_type& impl, const Mutable_Buffers& buffers, endpoint_type& sender_endpoint, socket_base::message_flags flags, Error_Handler error_handler) { // Copy buffers into WSABUF array. ::WSABUF bufs[max_buffers]; typename Mutable_Buffers::const_iterator iter = buffers.begin(); typename Mutable_Buffers::const_iterator end = buffers.end(); DWORD i = 0; for (; iter != end && i < max_buffers; ++iter, ++i) { boost::asio::mutable_buffer buffer(*iter); bufs[i].len = static_cast(boost::asio::buffer_size(buffer)); bufs[i].buf = boost::asio::buffer_cast(buffer); } // Receive some data. DWORD bytes_transferred = 0; DWORD recv_flags = flags; int endpoint_size = sender_endpoint.capacity(); int result = ::WSARecvFrom(impl.socket_, bufs, i, &bytes_transferred, &recv_flags, sender_endpoint.data(), &endpoint_size, 0, 0); if (result != 0) { DWORD last_error = ::WSAGetLastError(); error_handler(boost::asio::error(last_error)); return 0; } if (bytes_transferred == 0) { error_handler(boost::asio::error(boost::asio::error::eof)); return 0; } sender_endpoint.resize(endpoint_size); error_handler(boost::asio::error(0)); return bytes_transferred; } template class receive_from_operation : public operation { public: receive_from_operation(boost::asio::io_service& io_service, endpoint_type& endpoint, const Mutable_Buffers& buffers, Handler handler) : operation( &receive_from_operation::do_completion_impl, &receive_from_operation::destroy_impl), endpoint_(endpoint), endpoint_size_(endpoint.capacity()), work_(io_service), buffers_(buffers), handler_(handler) { } int& endpoint_size() { return endpoint_size_; } private: static void do_completion_impl(operation* op, DWORD last_error, size_t bytes_transferred) { // Take ownership of the operation object. typedef receive_from_operation op_type; op_type* handler_op(static_cast(op)); typedef handler_alloc_traits alloc_traits; handler_ptr ptr(handler_op->handler_, handler_op); // Check for connection closed. if (last_error == 0 && bytes_transferred == 0) { last_error = boost::asio::error::eof; } // Record the size of the endpoint returned by the operation. handler_op->endpoint_.resize(handler_op->endpoint_size_); // Make a copy of the handler so that the memory can be deallocated before // the upcall is made. Handler handler(handler_op->handler_); // Free the memory associated with the handler. ptr.reset(); // Call the handler. boost::asio::error error(last_error); handler(error, bytes_transferred); } static void destroy_impl(operation* op) { // Take ownership of the operation object. typedef receive_from_operation op_type; op_type* handler_op(static_cast(op)); typedef handler_alloc_traits alloc_traits; handler_ptr ptr(handler_op->handler_, handler_op); } endpoint_type& endpoint_; int endpoint_size_; boost::asio::io_service::work work_; Mutable_Buffers buffers_; Handler handler_; }; // Start an asynchronous receive. The buffer for the data being received and // the sender_endpoint object must both be valid for the lifetime of the // asynchronous operation. template void async_receive_from(implementation_type& impl, const Mutable_Buffers& buffers, endpoint_type& sender_endp, socket_base::message_flags flags, Handler handler) { // Allocate and construct an operation to wrap the handler. typedef receive_from_operation value_type; typedef handler_alloc_traits alloc_traits; raw_handler_ptr raw_ptr(handler); handler_ptr ptr(raw_ptr, owner(), sender_endp, buffers, handler); // Copy buffers into WSABUF array. ::WSABUF bufs[max_buffers]; typename Mutable_Buffers::const_iterator iter = buffers.begin(); typename Mutable_Buffers::const_iterator end = buffers.end(); DWORD i = 0; for (; iter != end && i < max_buffers; ++iter, ++i) { boost::asio::mutable_buffer buffer(*iter); bufs[i].len = static_cast(boost::asio::buffer_size(buffer)); bufs[i].buf = boost::asio::buffer_cast(buffer); } // Receive some data. DWORD bytes_transferred = 0; DWORD recv_flags = flags; int result = ::WSARecvFrom(impl.socket_, bufs, i, &bytes_transferred, &recv_flags, sender_endp.data(), &ptr.get()->endpoint_size(), ptr.get(), 0); DWORD last_error = ::WSAGetLastError(); if (result != 0 && last_error != WSA_IO_PENDING) { ptr.reset(); boost::asio::error error(last_error); iocp_service_.post(bind_handler(handler, error, bytes_transferred)); } else { ptr.release(); } } // Accept a new connection. template void accept(implementation_type& impl, Socket& peer, Error_Handler error_handler) { // We cannot accept a socket that is already open. if (peer.native() != invalid_socket) { error_handler(boost::asio::error(boost::asio::error::already_connected)); return; } for (;;) { socket_holder new_socket(socket_ops::accept(impl.socket_, 0, 0)); if (int err = socket_ops::get_error()) { if (err == boost::asio::error::connection_aborted && !(impl.flags_ & implementation_type::enable_connection_aborted)) { // Retry accept operation. continue; } else { error_handler(boost::asio::error(err)); return; } } boost::asio::error temp_error; peer.assign(impl.protocol_, new_socket.get(), boost::asio::assign_error(temp_error)); if (temp_error) { error_handler(temp_error); return; } else { new_socket.release(); error_handler(boost::asio::error(0)); return; } } } // Accept a new connection. template void accept_endpoint(implementation_type& impl, Socket& peer, endpoint_type& peer_endpoint, Error_Handler error_handler) { // We cannot accept a socket that is already open. if (peer.native() != invalid_socket) { error_handler(boost::asio::error(boost::asio::error::already_connected)); return; } for (;;) { socket_addr_len_type addr_len = peer_endpoint.capacity(); socket_holder new_socket(socket_ops::accept( impl.socket_, peer_endpoint.data(), &addr_len)); if (int err = socket_ops::get_error()) { if (err == boost::asio::error::connection_aborted && !(impl.flags_ & implementation_type::enable_connection_aborted)) { // Retry accept operation. continue; } else { error_handler(boost::asio::error(err)); return; } } peer_endpoint.resize(addr_len); boost::asio::error temp_error; peer.assign(impl.protocol_, new_socket.get(), boost::asio::assign_error(temp_error)); if (temp_error) { error_handler(temp_error); return; } else { new_socket.release(); error_handler(boost::asio::error(0)); return; } } } template class accept_operation : public operation { public: accept_operation(win_iocp_io_service& io_service, socket_type socket, socket_type new_socket, Socket& peer, const protocol_type& protocol, bool enable_connection_aborted, Handler handler) : operation( &accept_operation::do_completion_impl, &accept_operation::destroy_impl), io_service_(io_service), socket_(socket), new_socket_(new_socket), peer_(peer), protocol_(protocol), work_(io_service.owner()), enable_connection_aborted_(enable_connection_aborted), handler_(handler) { } socket_type new_socket() { return new_socket_.get(); } void* output_buffer() { return output_buffer_; } DWORD address_length() { return sizeof(sockaddr_storage_type) + 16; } private: static void do_completion_impl(operation* op, DWORD last_error, size_t bytes_transferred) { // Take ownership of the operation object. typedef accept_operation op_type; op_type* handler_op(static_cast(op)); typedef handler_alloc_traits alloc_traits; handler_ptr ptr(handler_op->handler_, handler_op); // Map Windows error ERROR_NETNAME_DELETED to connection_aborted. if (last_error == ERROR_NETNAME_DELETED) { last_error = boost::asio::error::connection_aborted; } // Restart the accept operation if we got the connection_aborted error // and the enable_connection_aborted socket option is not set. if (last_error == boost::asio::error::connection_aborted && !ptr.get()->enable_connection_aborted_) { // Reset OVERLAPPED structure. ptr.get()->Internal = 0; ptr.get()->InternalHigh = 0; ptr.get()->Offset = 0; ptr.get()->OffsetHigh = 0; ptr.get()->hEvent = 0; // Create a new socket for the next connection, since the AcceptEx call // fails with WSAEINVAL if we try to reuse the same socket. ptr.get()->new_socket_.reset(); ptr.get()->new_socket_.reset( socket_ops::socket(ptr.get()->protocol_.family(), ptr.get()->protocol_.type(), ptr.get()->protocol_.protocol())); last_error = socket_ops::get_error(); if (ptr.get()->new_socket() != invalid_socket) { // Accept a connection. DWORD bytes_read = 0; BOOL result = ::AcceptEx(ptr.get()->socket_, ptr.get()->new_socket(), ptr.get()->output_buffer(), 0, ptr.get()->address_length(), ptr.get()->address_length(), &bytes_read, ptr.get()); last_error = ::WSAGetLastError(); // Check if the operation completed immediately. if (!result && last_error != WSA_IO_PENDING) { if (last_error == ERROR_NETNAME_DELETED || last_error == boost::asio::error::connection_aborted) { // Post this handler so that operation will be restarted again. ptr.get()->io_service_.post_completion(ptr.get(), last_error, 0); ptr.release(); return; } else { // Operation already complete. Continue with rest of this handler. } } else { // Asynchronous operation has been successfully restarted. ptr.release(); return; } } } // Need to set the SO_UPDATE_ACCEPT_CONTEXT option so that getsockname // and getpeername will work on the accepted socket. if (last_error == 0) { DWORD update_ctx_param = handler_op->socket_; if (socket_ops::setsockopt(handler_op->new_socket_.get(), SOL_SOCKET, SO_UPDATE_ACCEPT_CONTEXT, &update_ctx_param, sizeof(DWORD)) != 0) { last_error = socket_ops::get_error(); } } // If the socket was successfully accepted, transfer ownership of the // socket to the peer object. if (last_error == 0) { boost::asio::error temp_error; handler_op->peer_.assign(handler_op->protocol_, handler_op->new_socket_.get(), boost::asio::assign_error(temp_error)); if (temp_error) last_error = temp_error.code(); else handler_op->new_socket_.release(); } // Make a copy of the handler so that the memory can be deallocated before // the upcall is made. Handler handler(handler_op->handler_); // Free the memory associated with the handler. ptr.reset(); // Call the handler. boost::asio::error error(last_error); handler(error); } static void destroy_impl(operation* op) { // Take ownership of the operation object. typedef accept_operation op_type; op_type* handler_op(static_cast(op)); typedef handler_alloc_traits alloc_traits; handler_ptr ptr(handler_op->handler_, handler_op); } win_iocp_io_service& io_service_; socket_type socket_; socket_holder new_socket_; Socket& peer_; protocol_type protocol_; boost::asio::io_service::work work_; unsigned char output_buffer_[(sizeof(sockaddr_storage_type) + 16) * 2]; bool enable_connection_aborted_; Handler handler_; }; // Start an asynchronous accept. The peer object must be valid until the // accept's handler is invoked. template void async_accept(implementation_type& impl, Socket& peer, Handler handler) { // Check whether acceptor has been initialised. if (impl.socket_ == invalid_socket) { boost::asio::error error(boost::asio::error::bad_descriptor); owner().post(bind_handler(handler, error)); return; } // Check that peer socket has not already been connected. if (peer.native() != invalid_socket) { boost::asio::error error(boost::asio::error::already_connected); owner().post(bind_handler(handler, error)); return; } // Create a new socket for the connection. socket_holder sock(socket_ops::socket(impl.protocol_.family(), impl.protocol_.type(), impl.protocol_.protocol())); if (sock.get() == invalid_socket) { boost::asio::error error(socket_ops::get_error()); owner().post(bind_handler(handler, error)); return; } // Allocate and construct an operation to wrap the handler. typedef accept_operation value_type; typedef handler_alloc_traits alloc_traits; raw_handler_ptr raw_ptr(handler); socket_type new_socket = sock.get(); bool enable_connection_aborted = (impl.flags_ & implementation_type::enable_connection_aborted); handler_ptr ptr(raw_ptr, iocp_service_, impl.socket_, new_socket, peer, impl.protocol_, enable_connection_aborted, handler); sock.release(); // Accept a connection. DWORD bytes_read = 0; BOOL result = ::AcceptEx(impl.socket_, ptr.get()->new_socket(), ptr.get()->output_buffer(), 0, ptr.get()->address_length(), ptr.get()->address_length(), &bytes_read, ptr.get()); DWORD last_error = ::WSAGetLastError(); // Check if the operation completed immediately. if (!result && last_error != WSA_IO_PENDING) { if (!enable_connection_aborted && (last_error == ERROR_NETNAME_DELETED || last_error == boost::asio::error::connection_aborted)) { // Post handler so that operation will be restarted again. We do not // perform the AcceptEx again here to avoid the possibility of starving // other handlers. iocp_service_.post_completion(ptr.get(), last_error, 0); ptr.release(); } else { ptr.reset(); boost::asio::error error(last_error); iocp_service_.post(bind_handler(handler, error)); } } else { ptr.release(); } } template class accept_endp_operation : public operation { public: accept_endp_operation(win_iocp_io_service& io_service, socket_type socket, socket_type new_socket, Socket& peer, const protocol_type& protocol, endpoint_type& peer_endpoint, bool enable_connection_aborted, Handler handler) : operation( &accept_endp_operation::do_completion_impl, &accept_endp_operation::destroy_impl), io_service_(io_service), socket_(socket), new_socket_(new_socket), peer_(peer), protocol_(protocol), peer_endpoint_(peer_endpoint), work_(io_service.owner()), enable_connection_aborted_(enable_connection_aborted), handler_(handler) { } socket_type new_socket() { return new_socket_.get(); } void* output_buffer() { return output_buffer_; } DWORD address_length() { return sizeof(sockaddr_storage_type) + 16; } private: static void do_completion_impl(operation* op, DWORD last_error, size_t bytes_transferred) { // Take ownership of the operation object. typedef accept_endp_operation op_type; op_type* handler_op(static_cast(op)); typedef handler_alloc_traits alloc_traits; handler_ptr ptr(handler_op->handler_, handler_op); // Map Windows error ERROR_NETNAME_DELETED to connection_aborted. if (last_error == ERROR_NETNAME_DELETED) { last_error = boost::asio::error::connection_aborted; } // Restart the accept operation if we got the connection_aborted error // and the enable_connection_aborted socket option is not set. if (last_error == boost::asio::error::connection_aborted && !ptr.get()->enable_connection_aborted_) { // Reset OVERLAPPED structure. ptr.get()->Internal = 0; ptr.get()->InternalHigh = 0; ptr.get()->Offset = 0; ptr.get()->OffsetHigh = 0; ptr.get()->hEvent = 0; // Create a new socket for the next connection, since the AcceptEx call // fails with WSAEINVAL if we try to reuse the same socket. ptr.get()->new_socket_.reset(); ptr.get()->new_socket_.reset( socket_ops::socket(ptr.get()->protocol_.family(), ptr.get()->protocol_.type(), ptr.get()->protocol_.protocol())); last_error = socket_ops::get_error(); if (ptr.get()->new_socket() != invalid_socket) { // Accept a connection. DWORD bytes_read = 0; BOOL result = ::AcceptEx(ptr.get()->socket_, ptr.get()->new_socket(), ptr.get()->output_buffer(), 0, ptr.get()->address_length(), ptr.get()->address_length(), &bytes_read, ptr.get()); last_error = ::WSAGetLastError(); // Check if the operation completed immediately. if (!result && last_error != WSA_IO_PENDING) { if (last_error == ERROR_NETNAME_DELETED || last_error == boost::asio::error::connection_aborted) { // Post this handler so that operation will be restarted again. ptr.get()->io_service_.post_completion(ptr.get(), last_error, 0); ptr.release(); return; } else { // Operation already complete. Continue with rest of this handler. } } else { // Asynchronous operation has been successfully restarted. ptr.release(); return; } } } // Get the address of the peer. if (last_error == 0) { LPSOCKADDR local_addr = 0; int local_addr_length = 0; LPSOCKADDR remote_addr = 0; int remote_addr_length = 0; GetAcceptExSockaddrs(handler_op->output_buffer(), 0, handler_op->address_length(), handler_op->address_length(), &local_addr, &local_addr_length, &remote_addr, &remote_addr_length); if (remote_addr_length > handler_op->peer_endpoint_.capacity()) { last_error = boost::asio::error::invalid_argument; } else { handler_op->peer_endpoint_.resize(remote_addr_length); using namespace std; // For memcpy. memcpy(handler_op->peer_endpoint_.data(), remote_addr, remote_addr_length); } } // Need to set the SO_UPDATE_ACCEPT_CONTEXT option so that getsockname // and getpeername will work on the accepted socket. if (last_error == 0) { DWORD update_ctx_param = handler_op->socket_; if (socket_ops::setsockopt(handler_op->new_socket_.get(), SOL_SOCKET, SO_UPDATE_ACCEPT_CONTEXT, &update_ctx_param, sizeof(DWORD)) != 0) { last_error = socket_ops::get_error(); } } // If the socket was successfully accepted, transfer ownership of the // socket to the peer object. if (last_error == 0) { boost::asio::error temp_error; handler_op->peer_.assign(handler_op->peer_endpoint_.protocol(), handler_op->new_socket_.get(), boost::asio::assign_error(temp_error)); if (temp_error) last_error = temp_error.code(); else handler_op->new_socket_.release(); } // Make a copy of the handler so that the memory can be deallocated before // the upcall is made. Handler handler(handler_op->handler_); // Free the memory associated with the handler. ptr.reset(); // Call the handler. boost::asio::error error(last_error); handler(error); } static void destroy_impl(operation* op) { // Take ownership of the operation object. typedef accept_endp_operation op_type; op_type* handler_op(static_cast(op)); typedef handler_alloc_traits alloc_traits; handler_ptr ptr(handler_op->handler_, handler_op); } win_iocp_io_service& io_service_; socket_type socket_; socket_holder new_socket_; Socket& peer_; protocol_type protocol_; endpoint_type& peer_endpoint_; boost::asio::io_service::work work_; unsigned char output_buffer_[(sizeof(sockaddr_storage_type) + 16) * 2]; bool enable_connection_aborted_; Handler handler_; }; // Start an asynchronous accept. The peer and peer_endpoint objects // must be valid until the accept's handler is invoked. template void async_accept_endpoint(implementation_type& impl, Socket& peer, endpoint_type& peer_endpoint, Handler handler) { // Check whether acceptor has been initialised. if (impl.socket_ == invalid_socket) { boost::asio::error error(boost::asio::error::bad_descriptor); owner().post(bind_handler(handler, error)); return; } // Check that peer socket has not already been connected. if (peer.native() != invalid_socket) { boost::asio::error error(boost::asio::error::already_connected); owner().post(bind_handler(handler, error)); return; } // Create a new socket for the connection. socket_holder sock(socket_ops::socket(impl.protocol_.family(), impl.protocol_.type(), impl.protocol_.protocol())); if (sock.get() == invalid_socket) { boost::asio::error error(socket_ops::get_error()); owner().post(bind_handler(handler, error)); return; } // Allocate and construct an operation to wrap the handler. typedef accept_endp_operation value_type; typedef handler_alloc_traits alloc_traits; raw_handler_ptr raw_ptr(handler); socket_type new_socket = sock.get(); bool enable_connection_aborted = (impl.flags_ & implementation_type::enable_connection_aborted); handler_ptr ptr(raw_ptr, iocp_service_, impl.socket_, new_socket, peer, impl.protocol_, peer_endpoint, enable_connection_aborted, handler); sock.release(); // Accept a connection. DWORD bytes_read = 0; BOOL result = ::AcceptEx(impl.socket_, ptr.get()->new_socket(), ptr.get()->output_buffer(), 0, ptr.get()->address_length(), ptr.get()->address_length(), &bytes_read, ptr.get()); DWORD last_error = ::WSAGetLastError(); // Check if the operation completed immediately. if (!result && last_error != WSA_IO_PENDING) { if (!enable_connection_aborted && (last_error == ERROR_NETNAME_DELETED || last_error == boost::asio::error::connection_aborted)) { // Post handler so that operation will be restarted again. We do not // perform the AcceptEx again here to avoid the possibility of starving // other handlers. iocp_service_.post_completion(ptr.get(), last_error, 0); ptr.release(); } else { ptr.reset(); boost::asio::error error(last_error); iocp_service_.post(bind_handler(handler, error)); } } else { ptr.release(); } } // Connect the socket to the specified endpoint. template void connect(implementation_type& impl, const endpoint_type& peer_endpoint, Error_Handler error_handler) { // Open the socket if it is not already open. if (impl.socket_ == invalid_socket) { // Get the flags used to create the new socket. int family = peer_endpoint.protocol().family(); int type = peer_endpoint.protocol().type(); int proto = peer_endpoint.protocol().protocol(); // Create a new socket. impl.socket_ = socket_ops::socket(family, type, proto); if (impl.socket_ == invalid_socket) { error_handler(boost::asio::error(socket_ops::get_error())); return; } iocp_service_.register_socket(impl.socket_); } // Perform the connect operation. int result = socket_ops::connect(impl.socket_, peer_endpoint.data(), peer_endpoint.size()); if (result == socket_error_retval) error_handler(boost::asio::error(socket_ops::get_error())); else error_handler(boost::asio::error(0)); } template class connect_handler { public: connect_handler(socket_type socket, boost::shared_ptr completed, boost::asio::io_service& io_service, reactor_type& reactor, Handler handler) : socket_(socket), completed_(completed), io_service_(io_service), reactor_(reactor), work_(io_service), handler_(handler) { } bool operator()(int result) { // Check whether a handler has already been called for the connection. // If it has, then we don't want to do anything in this handler. if (*completed_) return true; // Cancel the other reactor operation for the connection. *completed_ = true; reactor_.enqueue_cancel_ops_unlocked(socket_); // Check whether the operation was successful. if (result != 0) { boost::asio::error error(result); io_service_.post(bind_handler(handler_, error)); return true; } // Get the error code from the connect operation. int connect_error = 0; size_t connect_error_len = sizeof(connect_error); if (socket_ops::getsockopt(socket_, SOL_SOCKET, SO_ERROR, &connect_error, &connect_error_len) == socket_error_retval) { boost::asio::error error(socket_ops::get_error()); io_service_.post(bind_handler(handler_, error)); return true; } // If connection failed then post the handler with the error code. if (connect_error) { boost::asio::error error(connect_error); io_service_.post(bind_handler(handler_, error)); return true; } // Make the socket blocking again (the default). ioctl_arg_type non_blocking = 0; if (socket_ops::ioctl(socket_, FIONBIO, &non_blocking)) { boost::asio::error error(socket_ops::get_error()); io_service_.post(bind_handler(handler_, error)); return true; } // Post the result of the successful connection operation. boost::asio::error error(boost::asio::error::success); io_service_.post(bind_handler(handler_, error)); return true; } private: socket_type socket_; boost::shared_ptr completed_; boost::asio::io_service& io_service_; reactor_type& reactor_; boost::asio::io_service::work work_; Handler handler_; }; // Start an asynchronous connect. template void async_connect(implementation_type& impl, const endpoint_type& peer_endpoint, Handler handler) { // Check if the reactor was already obtained from the io_service. reactor_type* reactor = static_cast( interlocked_compare_exchange_pointer( reinterpret_cast(&reactor_), 0, 0)); if (!reactor) { reactor = &(boost::asio::use_service(owner())); interlocked_exchange_pointer( reinterpret_cast(&reactor_), reactor); } // Open the socket if it is not already open. if (impl.socket_ == invalid_socket) { // Get the flags used to create the new socket. int family = peer_endpoint.protocol().family(); int type = peer_endpoint.protocol().type(); int proto = peer_endpoint.protocol().protocol(); // Create a new socket. impl.socket_ = socket_ops::socket(family, type, proto); if (impl.socket_ == invalid_socket) { boost::asio::error error(socket_ops::get_error()); owner().post(bind_handler(handler, error)); return; } iocp_service_.register_socket(impl.socket_); } // Mark the socket as non-blocking so that the connection will take place // asynchronously. ioctl_arg_type non_blocking = 1; if (socket_ops::ioctl(impl.socket_, FIONBIO, &non_blocking)) { boost::asio::error error(socket_ops::get_error()); owner().post(bind_handler(handler, error)); return; } // Start the connect operation. if (socket_ops::connect(impl.socket_, peer_endpoint.data(), peer_endpoint.size()) == 0) { // The connect operation has finished successfully so we need to post the // handler immediately. boost::asio::error error(boost::asio::error::success); owner().post(bind_handler(handler, error)); } else if (socket_ops::get_error() == boost::asio::error::in_progress || socket_ops::get_error() == boost::asio::error::would_block) { // The connection is happening in the background, and we need to wait // until the socket becomes writeable. boost::shared_ptr completed(new bool(false)); reactor->start_write_and_except_ops(impl.socket_, connect_handler( impl.socket_, completed, owner(), *reactor, handler)); } else { // The connect operation has failed, so post the handler immediately. boost::asio::error error(socket_ops::get_error()); owner().post(bind_handler(handler, error)); } } private: // Helper function to provide InterlockedCompareExchangePointer functionality // on very old Platform SDKs. void* interlocked_compare_exchange_pointer(void** dest, void* exch, void* cmp) { #if defined(_WIN32_WINNT) && (_WIN32_WINNT <= 0x400) && (_M_IX86) return reinterpret_cast(InterlockedCompareExchange( reinterpret_cast(dest), reinterpret_cast(exch), reinterpret_cast(cmp))); #else return InterlockedCompareExchangePointer(dest, exch, cmp); #endif } // Helper function to provide InterlockedExchangePointer functionality on very // old Platform SDKs. void* interlocked_exchange_pointer(void** dest, void* val) { #if defined(_WIN32_WINNT) && (_WIN32_WINNT <= 0x400) && (_M_IX86) return reinterpret_cast(InterlockedExchange( reinterpret_cast(dest), reinterpret_cast(val))); #else return InterlockedExchangePointer(dest, val); #endif } // The IOCP service used for running asynchronous operations and dispatching // handlers. win_iocp_io_service& iocp_service_; // The reactor used for performing connect operations. This object is created // only if needed. reactor_type* reactor_; // Mutex to protect access to the linked list of implementations. boost::asio::detail::mutex mutex_; // The head of a linked list of all implementations. implementation_type* impl_list_; }; } // namespace detail } // namespace asio } // namespace boost #endif // defined(BOOST_ASIO_HAS_IOCP) #include #endif // BOOST_ASIO_DETAIL_WIN_IOCP_SOCKET_SERVICE_HPP