// Copyright 2004, 2005 The Trustees of Indiana University. // Distributed under the Boost Software License, Version 1.0. // (See accompanying file LICENSE_1_0.txt or copy at // http://www.boost.org/LICENSE_1_0.txt) // Authors: Douglas Gregor // Andrew Lumsdaine #ifndef BOOST_GRAPH_FRUCHTERMAN_REINGOLD_FORCE_DIRECTED_LAYOUT_HPP #define BOOST_GRAPH_FRUCHTERMAN_REINGOLD_FORCE_DIRECTED_LAYOUT_HPP #include #include #include #include #include // For topology concepts #include #include #include // for std::min and std::max #include // for std::accumulate #include // for std::sqrt and std::fabs #include namespace boost { struct square_distance_attractive_force { template T operator()(typename graph_traits::edge_descriptor, T k, T d, const Graph&) const { return d * d / k; } }; struct square_distance_repulsive_force { template T operator()(typename graph_traits::vertex_descriptor, typename graph_traits::vertex_descriptor, T k, T d, const Graph&) const { return k * k / d; } }; template struct linear_cooling { typedef T result_type; linear_cooling(std::size_t iterations) : temp(T(iterations) / T(10)), step(0.1) { } linear_cooling(std::size_t iterations, T temp) : temp(temp), step(temp / T(iterations)) { } T operator()() { T old_temp = temp; temp -= step; if (temp < T(0)) temp = T(0); return old_temp; } private: T temp; T step; }; struct all_force_pairs { template void operator()(const Graph& g, ApplyForce apply_force) { typedef typename graph_traits::vertex_iterator vertex_iterator; vertex_iterator v, end; for (boost::tie(v, end) = vertices(g); v != end; ++v) { vertex_iterator u = v; for (++u; u != end; ++u) { apply_force(*u, *v); apply_force(*v, *u); } } } }; template struct grid_force_pairs { typedef typename property_traits::value_type Point; BOOST_STATIC_ASSERT (Point::dimensions == 2); typedef typename Topology::point_difference_type point_difference_type; template explicit grid_force_pairs(const Topology& topology, PositionMap position, const Graph& g) : topology(topology), position(position) { two_k = 2. * this->topology.volume(this->topology.extent()) / std::sqrt((double)num_vertices(g)); } template void operator()(const Graph& g, ApplyForce apply_force) { typedef typename graph_traits::vertex_iterator vertex_iterator; typedef typename graph_traits::vertex_descriptor vertex_descriptor; typedef std::list bucket_t; typedef std::vector buckets_t; std::size_t columns = std::size_t(topology.extent()[0] / two_k + 1.); std::size_t rows = std::size_t(topology.extent()[1] / two_k + 1.); buckets_t buckets(rows * columns); vertex_iterator v, v_end; for (boost::tie(v, v_end) = vertices(g); v != v_end; ++v) { std::size_t column = std::size_t((get(position, *v)[0] + topology.extent()[0] / 2) / two_k); std::size_t row = std::size_t((get(position, *v)[1] + topology.extent()[1] / 2) / two_k); if (column >= columns) column = columns - 1; if (row >= rows) row = rows - 1; buckets[row * columns + column].push_back(*v); } for (std::size_t row = 0; row < rows; ++row) for (std::size_t column = 0; column < columns; ++column) { bucket_t& bucket = buckets[row * columns + column]; typedef typename bucket_t::iterator bucket_iterator; for (bucket_iterator u = bucket.begin(); u != bucket.end(); ++u) { // Repulse vertices in this bucket bucket_iterator v = u; for (++v; v != bucket.end(); ++v) { apply_force(*u, *v); apply_force(*v, *u); } std::size_t adj_start_row = row == 0? 0 : row - 1; std::size_t adj_end_row = row == rows - 1? row : row + 1; std::size_t adj_start_column = column == 0? 0 : column - 1; std::size_t adj_end_column = column == columns - 1? column : column + 1; for (std::size_t other_row = adj_start_row; other_row <= adj_end_row; ++other_row) for (std::size_t other_column = adj_start_column; other_column <= adj_end_column; ++other_column) if (other_row != row || other_column != column) { // Repulse vertices in this bucket bucket_t& other_bucket = buckets[other_row * columns + other_column]; for (v = other_bucket.begin(); v != other_bucket.end(); ++v) { double dist = topology.distance(get(position, *u), get(position, *v)); if (dist < two_k) apply_force(*u, *v); } } } } } private: const Topology& topology; PositionMap position; double two_k; }; template inline grid_force_pairs make_grid_force_pairs (const Topology& topology, const PositionMap& position, const Graph& g) { return grid_force_pairs(topology, position, g); } template void scale_graph(const Graph& g, PositionMap position, const Topology& topology, typename Topology::point_type upper_left, typename Topology::point_type lower_right) { if (num_vertices(g) == 0) return; typedef typename Topology::point_type Point; typedef typename Topology::point_difference_type point_difference_type; // Find min/max ranges Point min_point = get(position, *vertices(g).first), max_point = min_point; BGL_FORALL_VERTICES_T(v, g, Graph) { min_point = topology.pointwise_min(min_point, get(position, v)); max_point = topology.pointwise_max(max_point, get(position, v)); } Point old_origin = topology.move_position_toward(min_point, 0.5, max_point); Point new_origin = topology.move_position_toward(upper_left, 0.5, lower_right); point_difference_type old_size = topology.difference(max_point, min_point); point_difference_type new_size = topology.difference(lower_right, upper_left); // Scale to bounding box provided BGL_FORALL_VERTICES_T(v, g, Graph) { point_difference_type relative_loc = topology.difference(get(position, v), old_origin); relative_loc = (relative_loc / old_size) * new_size; put(position, v, topology.adjust(new_origin, relative_loc)); } } namespace detail { template void maybe_jitter_point(const Topology& topology, const PropMap& pm, Vertex v, const typename Topology::point_type& p2) { double too_close = topology.norm(topology.extent()) / 10000.; if (topology.distance(get(pm, v), p2) < too_close) { put(pm, v, topology.move_position_toward(get(pm, v), 1./200, topology.random_point())); } } template struct fr_apply_force { typedef typename graph_traits::vertex_descriptor vertex_descriptor; typedef typename Topology::point_type Point; typedef typename Topology::point_difference_type PointDiff; fr_apply_force(const Topology& topology, const PositionMap& position, const DisplacementMap& displacement, RepulsiveForce repulsive_force, double k, const Graph& g) : topology(topology), position(position), displacement(displacement), repulsive_force(repulsive_force), k(k), g(g) { } void operator()(vertex_descriptor u, vertex_descriptor v) { if (u != v) { // When the vertices land on top of each other, move the // first vertex away from the boundaries. maybe_jitter_point(topology, position, u, get(position, v)); double dist = topology.distance(get(position, u), get(position, v)); typename Topology::point_difference_type dispv = get(displacement, v); if (dist == 0.) { for (std::size_t i = 0; i < Point::dimensions; ++i) { dispv[i] += 0.01; } } else { double fr = repulsive_force(u, v, k, dist, g); dispv += (fr / dist) * topology.difference(get(position, v), get(position, u)); } put(displacement, v, dispv); } } private: const Topology& topology; PositionMap position; DisplacementMap displacement; RepulsiveForce repulsive_force; double k; const Graph& g; }; } // end namespace detail template void fruchterman_reingold_force_directed_layout (const Graph& g, PositionMap position, const Topology& topology, AttractiveForce attractive_force, RepulsiveForce repulsive_force, ForcePairs force_pairs, Cooling cool, DisplacementMap displacement) { typedef typename Topology::point_type Point; typedef typename graph_traits::vertex_iterator vertex_iterator; typedef typename graph_traits::vertex_descriptor vertex_descriptor; typedef typename graph_traits::edge_iterator edge_iterator; double volume = topology.volume(topology.extent()); // assume positions are initialized randomly double k = pow(volume / num_vertices(g), 1. / (double)(Topology::point_difference_type::dimensions)); detail::fr_apply_force apply_force(topology, position, displacement, repulsive_force, k, g); do { // Calculate repulsive forces vertex_iterator v, v_end; for (boost::tie(v, v_end) = vertices(g); v != v_end; ++v) put(displacement, *v, typename Topology::point_difference_type()); force_pairs(g, apply_force); // Calculate attractive forces edge_iterator e, e_end; for (boost::tie(e, e_end) = edges(g); e != e_end; ++e) { vertex_descriptor v = source(*e, g); vertex_descriptor u = target(*e, g); // When the vertices land on top of each other, move the // first vertex away from the boundaries. ::boost::detail::maybe_jitter_point(topology, position, u, get(position, v)); typename Topology::point_difference_type delta = topology.difference(get(position, v), get(position, u)); double dist = topology.distance(get(position, u), get(position, v)); double fa = attractive_force(*e, k, dist, g); put(displacement, v, get(displacement, v) - (fa / dist) * delta); put(displacement, u, get(displacement, u) + (fa / dist) * delta); } if (double temp = cool()) { // Update positions BGL_FORALL_VERTICES_T (v, g, Graph) { BOOST_USING_STD_MIN(); BOOST_USING_STD_MAX(); double disp_size = topology.norm(get(displacement, v)); put(position, v, topology.adjust(get(position, v), get(displacement, v) * (min BOOST_PREVENT_MACRO_SUBSTITUTION (disp_size, temp) / disp_size))); put(position, v, topology.bound(get(position, v))); } } else { break; } } while (true); } namespace detail { template struct fr_force_directed_layout { template static void run(const Graph& g, PositionMap position, const Topology& topology, AttractiveForce attractive_force, RepulsiveForce repulsive_force, ForcePairs force_pairs, Cooling cool, DisplacementMap displacement, const bgl_named_params&) { fruchterman_reingold_force_directed_layout (g, position, topology, attractive_force, repulsive_force, force_pairs, cool, displacement); } }; template<> struct fr_force_directed_layout { template static void run(const Graph& g, PositionMap position, const Topology& topology, AttractiveForce attractive_force, RepulsiveForce repulsive_force, ForcePairs force_pairs, Cooling cool, param_not_found, const bgl_named_params& params) { typedef typename Topology::point_difference_type PointDiff; std::vector displacements(num_vertices(g)); fruchterman_reingold_force_directed_layout (g, position, topology, attractive_force, repulsive_force, force_pairs, cool, make_iterator_property_map (displacements.begin(), choose_const_pmap(get_param(params, vertex_index), g, vertex_index), PointDiff())); } }; } // end namespace detail template void fruchterman_reingold_force_directed_layout (const Graph& g, PositionMap position, const Topology& topology, const bgl_named_params& params) { typedef typename get_param_type >::type D; detail::fr_force_directed_layout::run (g, position, topology, choose_param(get_param(params, attractive_force_t()), square_distance_attractive_force()), choose_param(get_param(params, repulsive_force_t()), square_distance_repulsive_force()), choose_param(get_param(params, force_pairs_t()), make_grid_force_pairs(topology, position, g)), choose_param(get_param(params, cooling_t()), linear_cooling(100)), get_param(params, vertex_displacement_t()), params); } template void fruchterman_reingold_force_directed_layout (const Graph& g, PositionMap position, const Topology& topology) { fruchterman_reingold_force_directed_layout (g, position, topology, attractive_force(square_distance_attractive_force())); } } // end namespace boost #ifdef BOOST_GRAPH_USE_MPI # include #endif #endif // BOOST_GRAPH_FRUCHTERMAN_REINGOLD_FORCE_DIRECTED_LAYOUT_HPP