// Copyright (c) 2006 Xiaogang Zhang // Use, modification and distribution are subject to the // Boost Software License, Version 1.0. (See accompanying file // LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt) #ifndef BOOST_MATH_BESSEL_YN_HPP #define BOOST_MATH_BESSEL_YN_HPP #ifdef _MSC_VER #pragma once #endif #include #include #include #include // Bessel function of the second kind of integer order // Y_n(z) is the dominant solution, forward recurrence always OK (though unstable) namespace boost { namespace math { namespace detail{ template T bessel_yn(int n, T x, const Policy& pol) { BOOST_MATH_STD_USING T value, factor, current, prev; using namespace boost::math::tools; static const char* function = "boost::math::bessel_yn<%1%>(%1%,%1%)"; if ((x == 0) && (n == 0)) { return -policies::raise_overflow_error(function, 0, pol); } if (x <= 0) { return policies::raise_domain_error(function, "Got x = %1%, but x must be > 0, complex result not supported.", x, pol); } // // Reflection comes first: // if (n < 0) { factor = (n & 0x1) ? -1 : 1; // Y_{-n}(z) = (-1)^n Y_n(z) n = -n; } else { factor = 1; } if(x < policies::get_epsilon()) { T scale = 1; value = bessel_yn_small_z(n, x, &scale, pol); if(tools::max_value() * fabs(scale) < fabs(value)) return boost::math::sign(scale) * boost::math::sign(value) * policies::raise_overflow_error(function, 0, pol); value /= scale; } else if (n == 0) { value = bessel_y0(x, pol); } else if (n == 1) { value = factor * bessel_y1(x, pol); } else { prev = bessel_y0(x, pol); current = bessel_y1(x, pol); int k = 1; BOOST_ASSERT(k < n); do { T fact = 2 * k / x; if((tools::max_value() - fabs(prev)) / fact < fabs(current)) { prev /= current; factor /= current; current = 1; } value = fact * current - prev; prev = current; current = value; ++k; } while(k < n); if(fabs(tools::max_value() * factor) < fabs(value)) return sign(value) * sign(value) * policies::raise_overflow_error(function, 0, pol); value /= factor; } return value; } }}} // namespaces #endif // BOOST_MATH_BESSEL_YN_HPP