////////////////////////////////////////////////////////////////////////////// // // (C) Copyright Ion Gaztanaga 2005-2008. Distributed under the Boost // Software License, Version 1.0. (See accompanying file // LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt) // // See http://www.boost.org/libs/interprocess for documentation. // ////////////////////////////////////////////////////////////////////////////// // // This file comes from SGI's string file. Modified by Ion Gaztanaga 2004-2008 // Renaming, isolating and porting to generic algorithms. Pointer typedef // set to allocator::pointer to allow placing it in shared memory. // /////////////////////////////////////////////////////////////////////////////// // Copyright (c) 1994 // Hewlett-Packard Company // // Permission to use, copy, modify, distribute and sell this software // and its documentation for any purpose is hereby granted without fee, // provided that the above copyright notice appear in all copies and // that both that copyright notice and this permission notice appear // in supporting documentation. Hewlett-Packard Company makes no // representations about the suitability of this software for any // purpose. It is provided "as is" without express or implied warranty. #ifndef BOOST_INTERPROCESS_STRING_HPP #define BOOST_INTERPROCESS_STRING_HPP #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include namespace boost { namespace interprocess { namespace detail { /// @cond // ------------------------------------------------------------ // Class basic_string_base. // basic_string_base is a helper class that makes it it easier to write // an exception-safe version of basic_string. The constructor allocates, // but does not initialize, a block of memory. The destructor // deallocates, but does not destroy elements within, a block of // memory. The destructor assumes that the memory either is the internal buffer, // or else points to a block of memory that was allocated using _String_base's // allocator and whose size is this->m_storage. template class basic_string_base { basic_string_base(); public: typedef A allocator_type; //! The stored allocator type typedef allocator_type stored_allocator_type; typedef typename A::pointer pointer; typedef typename A::value_type value_type; typedef typename A::size_type size_type; basic_string_base(const allocator_type& a) : members_(a) { init(); } basic_string_base(const allocator_type& a, std::size_t n) : members_(a) { this->init(); this->allocate_initial_block(n); } #ifndef BOOST_INTERPROCESS_RVALUE_REFERENCE basic_string_base(const detail::moved_object >& b) : members_(b.get().members_) { init(); this->swap(b.get()); } #else basic_string_base(basic_string_base && b) : members_(b.members_) { init(); this->swap(b); } #endif ~basic_string_base() { this->deallocate_block(); if(!this->is_short()){ static_cast(static_cast(&this->members_.m_repr.r))->~long_t(); } } private: //This is the structure controlling a long string struct long_t { size_type is_short : 1; size_type length : (sizeof(size_type)*CHAR_BIT - 1); size_type storage; pointer start; long_t() {} long_t(const long_t &other) { this->is_short = other.is_short; length = other.length; storage = other.storage; start = other.start; } long_t &operator =(const long_t &other) { this->is_short = other.is_short; length = other.length; storage = other.storage; start = other.start; return *this; } }; //This basic type should have the same alignment as long_t //iG typedef typename type_with_alignment::value>::type // long_alignment_type; typedef void *long_alignment_type; BOOST_STATIC_ASSERT((detail::alignment_of::value % detail::alignment_of::value) == 0); //This type is the first part of the structure controlling a short string //The "data" member stores struct short_header { unsigned char is_short : 1; unsigned char length : (CHAR_BIT - 1); }; //This type has the same alignment and size as long_t but it's POD //so, unlike long_t, it can be placed in a union struct long_raw_t { long_alignment_type a; unsigned char b[sizeof(long_t) - sizeof(long_alignment_type)]; }; protected: static const size_type MinInternalBufferChars = 8; static const size_type AlignmentOfValueType = alignment_of::value; static const size_type ShortDataOffset = detail::ct_rounded_size::value; static const size_type ZeroCostInternalBufferChars = (sizeof(long_t) - ShortDataOffset)/sizeof(value_type); static const size_type UnalignedFinalInternalBufferChars = (ZeroCostInternalBufferChars > MinInternalBufferChars) ? ZeroCostInternalBufferChars : MinInternalBufferChars; struct short_t { short_header h; value_type data[UnalignedFinalInternalBufferChars]; }; union repr_t { long_raw_t r; short_t s; short_t &short_repr() const { return *const_cast(&s); } long_t &long_repr() const { return *static_cast(const_cast(static_cast(&r))); } }; struct members_holder : public A { members_holder(const A &a) : A(a) {} repr_t m_repr; } members_; const A &alloc() const { return members_; } A &alloc() { return members_; } static const size_type InternalBufferChars = (sizeof(repr_t) - ShortDataOffset)/sizeof(value_type); private: static const size_type MinAllocation = InternalBufferChars*2; protected: bool is_short() const { return static_cast(this->members_.m_repr.s.h.is_short != 0); } void is_short(bool yes) { if(yes && !this->is_short()){ static_cast(static_cast(&this->members_.m_repr.r))->~long_t(); } else{ new(static_cast(&this->members_.m_repr.r))long_t(); } this->members_.m_repr.s.h.is_short = yes; } private: void init() { this->members_.m_repr.s.h.is_short = 1; this->members_.m_repr.s.h.length = 0; } protected: typedef detail::integral_constant allocator_v1; typedef detail::integral_constant allocator_v2; typedef detail::integral_constant::value> alloc_version; std::pair allocation_command(allocation_type command, size_type limit_size, size_type preferred_size, size_type &received_size, pointer reuse = 0) { if(this->is_short() && (command & (expand_fwd | expand_bwd)) ){ reuse = pointer(0); command &= ~(expand_fwd | expand_bwd); } return this->allocation_command (command, limit_size, preferred_size, received_size, reuse, alloc_version()); } std::pair allocation_command(allocation_type command, size_type limit_size, size_type preferred_size, size_type &received_size, const pointer &reuse, allocator_v1) { (void)limit_size; (void)reuse; if(!(command & allocate_new)) return std::pair(0, 0); received_size = preferred_size; return std::make_pair(this->alloc().allocate(received_size), false); } std::pair allocation_command(allocation_type command, size_type limit_size, size_type preferred_size, size_type &received_size, pointer reuse, allocator_v2) { return this->alloc().allocation_command(command, limit_size, preferred_size, received_size, reuse); } size_type next_capacity(size_type additional_objects) const { return get_next_capacity(this->alloc().max_size(), this->priv_storage(), additional_objects); } void deallocate(pointer p, std::size_t n) { if (p && (n > InternalBufferChars)) this->alloc().deallocate(p, n); } void construct(pointer p, const value_type &value = value_type()) { new(detail::get_pointer(p)) value_type(value); } void destroy(pointer p, size_type n) { for(; n--; ++p) detail::get_pointer(p)->~value_type(); } void destroy(pointer p) { detail::get_pointer(p)->~value_type(); } void allocate_initial_block(std::size_t n) { if (n <= this->max_size()) { if(n > InternalBufferChars){ size_type new_cap = this->next_capacity(n); pointer p = this->allocation_command(allocate_new, n, new_cap, new_cap).first; this->is_short(false); this->priv_addr(p); this->priv_size(0); this->priv_storage(new_cap); } } else throw_length_error(); } void deallocate_block() { this->deallocate(this->priv_addr(), this->priv_storage()); } std::size_t max_size() const { return this->alloc().max_size() - 1; } // Helper functions for exception handling. void throw_length_error() const { throw(std::length_error("basic_string")); } void throw_out_of_range() const { throw(std::out_of_range("basic_string")); } protected: size_type priv_capacity() const { return this->priv_storage() - 1; } pointer priv_addr() const { return this->is_short() ? pointer(&this->members_.m_repr.short_repr().data[0]) : this->members_.m_repr.long_repr().start; } void priv_addr(pointer addr) { this->members_.m_repr.long_repr().start = addr; } size_type priv_storage() const { return this->is_short() ? InternalBufferChars : this->members_.m_repr.long_repr().storage; } void priv_storage(size_type storage) { if(!this->is_short()) this->members_.m_repr.long_repr().storage = storage; } size_type priv_size() const { return this->is_short() ? this->members_.m_repr.short_repr().h.length : this->members_.m_repr.long_repr().length; } void priv_size(size_type sz) { if(this->is_short()) this->members_.m_repr.s.h.length = (unsigned char)sz; else this->members_.m_repr.long_repr().length = static_cast(sz); } void swap(basic_string_base& other) { if(this->is_short()){ if(other.is_short()){ std::swap(this->members_.m_repr, other.members_.m_repr); } else{ repr_t copied(this->members_.m_repr); this->members_.m_repr.long_repr() = other.members_.m_repr.long_repr(); other.members_.m_repr = copied; } } else{ if(other.is_short()){ repr_t copied(other.members_.m_repr); other.members_.m_repr.long_repr() = this->members_.m_repr.long_repr(); this->members_.m_repr = copied; } else{ std::swap(this->members_.m_repr.long_repr(), other.members_.m_repr.long_repr()); } } allocator_type & this_al = this->alloc(), &other_al = other.alloc(); if(this_al != other_al){ detail::do_swap(this_al, other_al); } } }; /// @endcond } //namespace detail { //! The basic_string class represents a Sequence of characters. It contains all the //! usual operations of a Sequence, and, additionally, it contains standard string //! operations such as search and concatenation. //! //! The basic_string class is parameterized by character type, and by that type's //! Character Traits. //! //! This class has performance characteristics very much like vector<>, meaning, //! for example, that it does not perform reference-count or copy-on-write, and that //! concatenation of two strings is an O(N) operation. //! //! Some of basic_string's member functions use an unusual method of specifying positions //! and ranges. In addition to the conventional method using iterators, many of //! basic_string's member functions use a single value pos of type size_type to represent a //! position (in which case the position is begin() + pos, and many of basic_string's //! member functions use two values, pos and n, to represent a range. In that case pos is //! the beginning of the range and n is its size. That is, the range is //! [begin() + pos, begin() + pos + n). //! //! Note that the C++ standard does not specify the complexity of basic_string operations. //! In this implementation, basic_string has performance characteristics very similar to //! those of vector: access to a single character is O(1), while copy and concatenation //! are O(N). //! //! In this implementation, begin(), //! end(), rbegin(), rend(), operator[], c_str(), and data() do not invalidate iterators. //! In this implementation, iterators are only invalidated by member functions that //! explicitly change the string's contents. template class basic_string : private detail::basic_string_base { /// @cond private: typedef detail::basic_string_base base_t; static const typename base_t::size_type InternalBufferChars = base_t::InternalBufferChars; protected: // A helper class to use a char_traits as a function object. template struct Eq_traits : public std::binary_function { bool operator()(const typename Tr::char_type& x, const typename Tr::char_type& y) const { return Tr::eq(x, y); } }; template struct Not_within_traits : public std::unary_function { typedef const typename Tr::char_type* Pointer; const Pointer m_first; const Pointer m_last; Not_within_traits(Pointer f, Pointer l) : m_first(f), m_last(l) {} bool operator()(const typename Tr::char_type& x) const { return std::find_if(m_first, m_last, std::bind1st(Eq_traits(), x)) == m_last; } }; /// @endcond public: //! The allocator type typedef A allocator_type; //! The stored allocator type typedef allocator_type stored_allocator_type; //! The type of object, CharT, stored in the string typedef CharT value_type; //! The second template parameter Traits typedef Traits traits_type; //! Pointer to CharT typedef typename A::pointer pointer; //! Const pointer to CharT typedef typename A::const_pointer const_pointer; //! Reference to CharT typedef typename A::reference reference; //! Const reference to CharT typedef typename A::const_reference const_reference; //! An unsigned integral type typedef typename A::size_type size_type; //! A signed integral type typedef typename A::difference_type difference_type; //! Iterator used to iterate through a string. It's a Random Access Iterator typedef pointer iterator; //! Const iterator used to iterate through a string. It's a Random Access Iterator typedef const_pointer const_iterator; //! Iterator used to iterate backwards through a string typedef std::reverse_iterator reverse_iterator; //! Const iterator used to iterate backwards through a string typedef std::reverse_iterator const_reverse_iterator; //! The largest possible value of type size_type. That is, size_type(-1). static const size_type npos; /// @cond private: typedef constant_iterator cvalue_iterator; /// @endcond public: // Constructor, destructor, assignment. struct reserve_t {}; basic_string(reserve_t, std::size_t n, const allocator_type& a = allocator_type()) : base_t(a, n + 1) { this->priv_terminate_string(); } //! Effects: Constructs a basic_string taking the allocator as parameter. //! //! Throws: If allocator_type's copy constructor throws. explicit basic_string(const allocator_type& a = allocator_type()) : base_t(a, InternalBufferChars) { this->priv_terminate_string(); } //! Effects: Copy constructs a basic_string. //! //! Postcondition: x == *this. //! //! Throws: If allocator_type's default constructor or copy constructor throws. basic_string(const basic_string& s) : base_t(s.alloc()) { this->priv_range_initialize(s.begin(), s.end()); } //! Effects: Move constructor. Moves mx's resources to *this. //! //! Throws: If allocator_type's copy constructor throws. //! //! Complexity: Constant. #ifndef BOOST_INTERPROCESS_RVALUE_REFERENCE basic_string(const detail::moved_object& s) : base_t(move((base_t&)s.get())) {} #else basic_string(basic_string && s) : base_t(move((base_t&)s)) {} #endif //! Effects: Constructs a basic_string taking the allocator as parameter, //! and is initialized by a specific number of characters of the s string. basic_string(const basic_string& s, size_type pos, size_type n = npos, const allocator_type& a = allocator_type()) : base_t(a) { if (pos > s.size()) this->throw_out_of_range(); else this->priv_range_initialize (s.begin() + pos, s.begin() + pos + min_value(n, s.size() - pos)); } //! Effects: Constructs a basic_string taking the allocator as parameter, //! and is initialized by a specific number of characters of the s c-string. basic_string(const CharT* s, size_type n, const allocator_type& a = allocator_type()) : base_t(a) { this->priv_range_initialize(s, s + n); } //! Effects: Constructs a basic_string taking the allocator as parameter, //! and is initialized by the null-terminated s c-string. basic_string(const CharT* s, const allocator_type& a = allocator_type()) : base_t(a) { this->priv_range_initialize(s, s + Traits::length(s)); } //! Effects: Constructs a basic_string taking the allocator as parameter, //! and is initialized by n copies of c. basic_string(size_type n, CharT c, const allocator_type& a = allocator_type()) : base_t(a) { this->priv_range_initialize(cvalue_iterator(c, n), cvalue_iterator()); } //! Effects: Constructs a basic_string taking the allocator as parameter, //! and a range of iterators. template basic_string(InputIterator f, InputIterator l, const allocator_type& a = allocator_type()) : base_t(a) { //Dispatch depending on integer/iterator const bool aux_boolean = detail::is_convertible::value; typedef detail::bool_ Result; this->priv_initialize_dispatch(f, l, Result()); } //! Effects: Destroys the basic_string. All used memory is deallocated. //! //! Throws: Nothing. //! //! Complexity: Constant. ~basic_string() {} //! Effects: Copy constructs a string. //! //! Postcondition: x == *this. //! //! Complexity: Linear to the elements x contains. basic_string& operator=(const basic_string& s) { if (&s != this) this->assign(s.begin(), s.end()); return *this; } //! Effects: Move constructor. Moves mx's resources to *this. //! //! Throws: If allocator_type's copy constructor throws. //! //! Complexity: Constant. #ifndef BOOST_INTERPROCESS_RVALUE_REFERENCE basic_string& operator=(const detail::moved_object& ms) { basic_string &s = ms.get(); if (&s != this){ this->swap(s); } return *this; } #else basic_string& operator=(basic_string && ms) { basic_string &s = ms; if (&s != this){ this->swap(s); } return *this; } #endif //! Effects: Assignment from a null-terminated c-string. basic_string& operator=(const CharT* s) { return this->assign(s, s + Traits::length(s)); } //! Effects: Assignment from character. basic_string& operator=(CharT c) { return this->assign(static_cast(1), c); } //! Effects: Returns an iterator to the first element contained in the vector. //! //! Throws: Nothing. //! //! Complexity: Constant. iterator begin() { return this->priv_addr(); } //! Effects: Returns a const_iterator to the first element contained in the vector. //! //! Throws: Nothing. //! //! Complexity: Constant. const_iterator begin() const { return this->priv_addr(); } //! Effects: Returns an iterator to the end of the vector. //! //! Throws: Nothing. //! //! Complexity: Constant. iterator end() { return this->priv_addr() + this->priv_size(); } //! Effects: Returns a const_iterator to the end of the vector. //! //! Throws: Nothing. //! //! Complexity: Constant. const_iterator end() const { return this->priv_addr() + this->priv_size(); } //! Effects: Returns a reverse_iterator pointing to the beginning //! of the reversed vector. //! //! Throws: Nothing. //! //! Complexity: Constant. reverse_iterator rbegin() { return reverse_iterator(this->priv_addr() + this->priv_size()); } //! Effects: Returns a const_reverse_iterator pointing to the beginning //! of the reversed vector. //! //! Throws: Nothing. //! //! Complexity: Constant. const_reverse_iterator rbegin() const { return const_reverse_iterator(this->priv_addr() + this->priv_size()); } //! Effects: Returns a reverse_iterator pointing to the end //! of the reversed vector. //! //! Throws: Nothing. //! //! Complexity: Constant. reverse_iterator rend() { return reverse_iterator(this->priv_addr()); } //! Effects: Returns a const_reverse_iterator pointing to the end //! of the reversed vector. //! //! Throws: Nothing. //! //! Complexity: Constant. const_reverse_iterator rend() const { return const_reverse_iterator(this->priv_addr()); } //! Effects: Returns a copy of the internal allocator. //! //! Throws: If allocator's copy constructor throws. //! //! Complexity: Constant. allocator_type get_allocator() const { return this->alloc(); } //! Effects: Returns the number of the elements contained in the vector. //! //! Throws: Nothing. //! //! Complexity: Constant. size_type size() const { return this->priv_size(); } //! Effects: Returns the number of the elements contained in the vector. //! //! Throws: Nothing. //! //! Complexity: Constant. size_type length() const { return this->size(); } //! Effects: Returns the largest possible size of the vector. //! //! Throws: Nothing. //! //! Complexity: Constant. size_type max_size() const { return base_t::max_size(); } //! Effects: Inserts or erases elements at the end such that //! the size becomes n. New elements are copy constructed from x. //! //! Throws: If memory allocation throws, or T's copy constructor throws. //! //! Complexity: Linear to the difference between size() and new_size. void resize(size_type n, CharT c) { if (n <= size()) this->erase(this->begin() + n, this->end()); else this->append(n - this->size(), c); } //! Effects: Inserts or erases elements at the end such that //! the size becomes n. New elements are default constructed. //! //! Throws: If memory allocation throws, or T's copy constructor throws. //! //! Complexity: Linear to the difference between size() and new_size. void resize(size_type n) { resize(n, this->priv_null()); } //! Effects: If n is less than or equal to capacity(), this call has no //! effect. Otherwise, it is a request for allocation of additional memory. //! If the request is successful, then capacity() is greater than or equal to //! n; otherwise, capacity() is unchanged. In either case, size() is unchanged. //! //! Throws: If memory allocation allocation throws or T's copy constructor throws. void reserve(size_type res_arg) { if (res_arg > this->max_size()) this->throw_length_error(); if (this->capacity() < res_arg){ size_type n = max_value(res_arg, this->size()) + 1; size_type new_cap = this->next_capacity(n); pointer new_start = this->allocation_command (allocate_new, n, new_cap, new_cap).first; size_type new_length = 0; new_length += priv_uninitialized_copy (this->priv_addr(), this->priv_addr() + this->priv_size(), new_start); this->priv_construct_null(new_start + new_length); this->deallocate_block(); this->is_short(false); this->priv_addr(new_start); this->priv_size(new_length); this->priv_storage(new_cap); } } //! Effects: Number of elements for which memory has been allocated. //! capacity() is always greater than or equal to size(). //! //! Throws: Nothing. //! //! Complexity: Constant. size_type capacity() const { return this->priv_capacity(); } //! Effects: Erases all the elements of the vector. //! //! Throws: Nothing. //! //! Complexity: Linear to the number of elements in the vector. void clear() { if (!empty()) { Traits::assign(*this->priv_addr(), this->priv_null()); this->priv_size(0); } } //! Effects: Returns true if the vector contains no elements. //! //! Throws: Nothing. //! //! Complexity: Constant. bool empty() const { return !this->priv_size(); } //! Requires: size() < n. //! //! Effects: Returns a reference to the nth element //! from the beginning of the container. //! //! Throws: Nothing. //! //! Complexity: Constant. reference operator[](size_type n) { return *(this->priv_addr() + n); } //! Requires: size() < n. //! //! Effects: Returns a const reference to the nth element //! from the beginning of the container. //! //! Throws: Nothing. //! //! Complexity: Constant. const_reference operator[](size_type n) const { return *(this->priv_addr() + n); } //! Requires: size() < n. //! //! Effects: Returns a reference to the nth element //! from the beginning of the container. //! //! Throws: std::range_error if n >= size() //! //! Complexity: Constant. reference at(size_type n) { if (n >= size()) this->throw_out_of_range(); return *(this->priv_addr() + n); } //! Requires: size() < n. //! //! Effects: Returns a const reference to the nth element //! from the beginning of the container. //! //! Throws: std::range_error if n >= size() //! //! Complexity: Constant. const_reference at(size_type n) const { if (n >= size()) this->throw_out_of_range(); return *(this->priv_addr() + n); } //! Effects: Appends string s to *this. basic_string& operator+=(const basic_string& s) { return this->append(s); } //! Effects: Appends c-string s to *this. basic_string& operator+=(const CharT* s) { return this->append(s); } //! Effects: Appends character c to *this. basic_string& operator+=(CharT c) { this->push_back(c); return *this; } //! Effects: Appends string s to *this. basic_string& append(const basic_string& s) { return this->append(s.begin(), s.end()); } //! Effects: Appends the range [pos, pos + n) from string s to *this. basic_string& append(const basic_string& s, size_type pos, size_type n) { if (pos > s.size()) this->throw_out_of_range(); return this->append(s.begin() + pos, s.begin() + pos + min_value(n, s.size() - pos)); } //! Effects: Appends the range [s, s + n) from c-string s to *this. basic_string& append(const CharT* s, size_type n) { return this->append(s, s + n); } //! Effects: Appends the c-string s to *this. basic_string& append(const CharT* s) { return this->append(s, s + Traits::length(s)); } //! Effects: Appends the n times the character c to *this. basic_string& append(size_type n, CharT c) { return this->append(cvalue_iterator(c, n), cvalue_iterator()); } //! Effects: Appends the range [first, last) *this. template basic_string& append(InputIter first, InputIter last) { this->insert(this->end(), first, last); return *this; } //! Effects: Inserts a copy of c at the end of the vector. void push_back(CharT c) { if (this->priv_size() < this->capacity()){ this->priv_construct_null(this->priv_addr() + (this->priv_size() + 1)); Traits::assign(this->priv_addr()[this->priv_size()], c); this->priv_size(this->priv_size()+1); } else{ //No enough memory, insert a new object at the end this->append((size_type)1, c); } } //! Effects: Removes the last element from the vector. void pop_back() { Traits::assign(this->priv_addr()[this->priv_size()-1], this->priv_null()); this->priv_size(this->priv_size()-1);; } //! Effects: Assigns the value s to *this. basic_string& assign(const basic_string& s) { return this->operator=(s); } //! Effects: Moves the resources from ms *this. #ifndef BOOST_INTERPROCESS_RVALUE_REFERENCE basic_string& assign(const detail::moved_object& ms) { return this->operator=(ms);} #else basic_string& assign(basic_string && ms) { return this->operator=(ms);} #endif //! Effects: Assigns the range [pos, pos + n) from s to *this. basic_string& assign(const basic_string& s, size_type pos, size_type n) { if (pos > s.size()) this->throw_out_of_range(); return this->assign(s.begin() + pos, s.begin() + pos + min_value(n, s.size() - pos)); } //! Effects: Assigns the range [s, s + n) from s to *this. basic_string& assign(const CharT* s, size_type n) { return this->assign(s, s + n); } //! Effects: Assigns the c-string s to *this. basic_string& assign(const CharT* s) { return this->assign(s, s + Traits::length(s)); } //! Effects: Assigns the character c n-times to *this. basic_string& assign(size_type n, CharT c) { return this->assign(cvalue_iterator(c, n), cvalue_iterator()); } //! Effects: Assigns the range [first, last) to *this. template basic_string& assign(InputIter first, InputIter last) { //Dispatch depending on integer/iterator const bool aux_boolean = detail::is_convertible::value; typedef detail::bool_ Result; return this->priv_assign_dispatch(first, last, Result()); } //! Effects: Assigns the range [f, l) to *this. basic_string& assign(const CharT* f, const CharT* l) { const std::ptrdiff_t n = l - f; if (static_cast(n) <= size()) { Traits::copy(detail::get_pointer(this->priv_addr()), f, n); this->erase(this->priv_addr() + n, this->priv_addr() + this->priv_size()); } else { Traits::copy(detail::get_pointer(this->priv_addr()), f, this->priv_size()); this->append(f + this->priv_size(), l); } return *this; } //! Effects: Inserts the string s before pos. basic_string& insert(size_type pos, const basic_string& s) { if (pos > size()) this->throw_out_of_range(); if (this->size() > this->max_size() - s.size()) this->throw_length_error(); this->insert(this->priv_addr() + pos, s.begin(), s.end()); return *this; } //! Effects: Inserts the range [pos, pos + n) from string s before pos. basic_string& insert(size_type pos, const basic_string& s, size_type beg, size_type n) { if (pos > this->size() || beg > s.size()) this->throw_out_of_range(); size_type len = min_value(n, s.size() - beg); if (this->size() > this->max_size() - len) this->throw_length_error(); const CharT *beg_ptr = detail::get_pointer(s.begin()) + beg; const CharT *end_ptr = beg_ptr + len; this->insert(this->priv_addr() + pos, beg_ptr, end_ptr); return *this; } //! Effects: Inserts the range [s, s + n) before pos. basic_string& insert(size_type pos, const CharT* s, size_type n) { if (pos > this->size()) this->throw_out_of_range(); if (this->size() > this->max_size() - n) this->throw_length_error(); this->insert(this->priv_addr() + pos, s, s + n); return *this; } //! Effects: Inserts the c-string s before pos. basic_string& insert(size_type pos, const CharT* s) { if (pos > size()) this->throw_out_of_range(); size_type len = Traits::length(s); if (this->size() > this->max_size() - len) this->throw_length_error(); this->insert(this->priv_addr() + pos, s, s + len); return *this; } //! Effects: Inserts the character c n-times before pos. basic_string& insert(size_type pos, size_type n, CharT c) { if (pos > this->size()) this->throw_out_of_range(); if (this->size() > this->max_size() - n) this->throw_length_error(); this->insert(this->priv_addr() + pos, n, c); return *this; } //! Effects: Inserts the character c before position. iterator insert(iterator position, CharT c) { size_type new_offset = position - this->priv_addr() + 1; this->insert(position, cvalue_iterator(c, 1), cvalue_iterator()); return this->priv_addr() + new_offset; } //! Effects: Inserts the character c n-times before position. void insert(iterator position, std::size_t n, CharT c) { this->insert(position, cvalue_iterator(c, n), cvalue_iterator()); } //! Effects: Inserts the range [first, last) before position. template void insert(iterator p, InputIter first, InputIter last) { //Dispatch depending on integer/iterator const bool aux_boolean = detail::is_convertible::value; typedef detail::bool_ Result; this->priv_insert_dispatch(p, first, last, Result()); } //! Effects: Inserts the range [pos, pos + n). basic_string& erase(size_type pos = 0, size_type n = npos) { if (pos > size()) this->throw_out_of_range(); erase(this->priv_addr() + pos, this->priv_addr() + pos + min_value(n, size() - pos)); return *this; } //! Effects: Erases the character pointed by position. iterator erase(iterator position) { // The move includes the terminating null. Traits::move(detail::get_pointer(position), detail::get_pointer(position + 1), this->priv_size() - (position - this->priv_addr())); this->priv_size(this->priv_size()-1); return position; } //! Effects: Erases the range [first, last). iterator erase(iterator first, iterator last) { if (first != last) { // The move includes the terminating null. size_type num_erased = last - first; Traits::move(detail::get_pointer(first), detail::get_pointer(last), (this->priv_size() + 1)-(last - this->priv_addr())); size_type new_length = this->priv_size() - num_erased; this->priv_size(new_length); } return first; } //! Effects: Replaces a substring of *this with the string s. basic_string& replace(size_type pos, size_type n, const basic_string& s) { if (pos > size()) this->throw_out_of_range(); const size_type len = min_value(n, size() - pos); if (this->size() - len >= this->max_size() - s.size()) this->throw_length_error(); return this->replace(this->priv_addr() + pos, this->priv_addr() + pos + len, s.begin(), s.end()); } //! Effects: Replaces a substring of *this with a substring of s. basic_string& replace(size_type pos1, size_type n1, const basic_string& s, size_type pos2, size_type n2) { if (pos1 > size() || pos2 > s.size()) this->throw_out_of_range(); const size_type len1 = min_value(n1, size() - pos1); const size_type len2 = min_value(n2, s.size() - pos2); if (this->size() - len1 >= this->max_size() - len2) this->throw_length_error(); return this->replace(this->priv_addr() + pos1, this->priv_addr() + pos1 + len1, s.priv_addr() + pos2, s.priv_addr() + pos2 + len2); } //! Effects: Replaces a substring of *this with the first n1 characters of s. basic_string& replace(size_type pos, size_type n1, const CharT* s, size_type n2) { if (pos > size()) this->throw_out_of_range(); const size_type len = min_value(n1, size() - pos); if (n2 > this->max_size() || size() - len >= this->max_size() - n2) this->throw_length_error(); return this->replace(this->priv_addr() + pos, this->priv_addr() + pos + len, s, s + n2); } //! Effects: Replaces a substring of *this with a null-terminated character array. basic_string& replace(size_type pos, size_type n1, const CharT* s) { if (pos > size()) this->throw_out_of_range(); const size_type len = min_value(n1, size() - pos); const size_type n2 = Traits::length(s); if (n2 > this->max_size() || size() - len >= this->max_size() - n2) this->throw_length_error(); return this->replace(this->priv_addr() + pos, this->priv_addr() + pos + len, s, s + Traits::length(s)); } //! Effects: Replaces a substring of *this with n1 copies of c. basic_string& replace(size_type pos, size_type n1, size_type n2, CharT c) { if (pos > size()) this->throw_out_of_range(); const size_type len = min_value(n1, size() - pos); if (n2 > this->max_size() || size() - len >= this->max_size() - n2) this->throw_length_error(); return this->replace(this->priv_addr() + pos, this->priv_addr() + pos + len, n2, c); } //! Effects: Replaces a substring of *this with the string s. basic_string& replace(iterator first, iterator last, const basic_string& s) { return this->replace(first, last, s.begin(), s.end()); } //! Effects: Replaces a substring of *this with the first n characters of s. basic_string& replace(iterator first, iterator last, const CharT* s, size_type n) { return this->replace(first, last, s, s + n); } //! Effects: Replaces a substring of *this with a null-terminated character array. basic_string& replace(iterator first, iterator last, const CharT* s) { return this->replace(first, last, s, s + Traits::length(s)); } //! Effects: Replaces a substring of *this with n copies of c. basic_string& replace(iterator first, iterator last, size_type n, CharT c) { const size_type len = static_cast(last - first); if (len >= n) { Traits::assign(detail::get_pointer(first), n, c); erase(first + n, last); } else { Traits::assign(detail::get_pointer(first), len, c); insert(last, n - len, c); } return *this; } //! Effects: Replaces a substring of *this with the range [f, l) template basic_string& replace(iterator first, iterator last, InputIter f, InputIter l) { //Dispatch depending on integer/iterator const bool aux_boolean = detail::is_convertible::value; typedef detail::bool_ Result; return this->priv_replace_dispatch(first, last, f, l, Result()); } //! Effects: Copies a substring of *this to a buffer. size_type copy(CharT* s, size_type n, size_type pos = 0) const { if (pos > size()) this->throw_out_of_range(); const size_type len = min_value(n, size() - pos); Traits::copy(s, detail::get_pointer(this->priv_addr() + pos), len); return len; } //! Effects: Swaps the contents of two strings. void swap(basic_string& s) { base_t::swap(s); } //! Effects: Swaps the contents of two strings. #ifndef BOOST_INTERPROCESS_RVALUE_REFERENCE void swap(const detail::moved_object& ms) { this->swap(ms.get()); } #else void swap(basic_string && ms) { this->swap(ms); } #endif //! Returns: Returns a pointer to a null-terminated array of characters //! representing the string's contents. For any string s it is guaranteed //! that the first s.size() characters in the array pointed to by s.c_str() //! are equal to the character in s, and that s.c_str()[s.size()] is a null //! character. Note, however, that it not necessarily the first null character. //! Characters within a string are permitted to be null. const CharT* c_str() const { return detail::get_pointer(this->priv_addr()); } //! Returns: Returns a pointer to an array of characters, not necessarily //! null-terminated, representing the string's contents. data() is permitted, //! but not required, to be identical to c_str(). The first size() characters //! of that array are guaranteed to be identical to the characters in *this. //! The return value of data() is never a null pointer, even if size() is zero. const CharT* data() const { return detail::get_pointer(this->priv_addr()); } //! Effects: Searches for s as a substring of *this, beginning at //! character pos of *this. size_type find(const basic_string& s, size_type pos = 0) const { return find(s.c_str(), pos, s.size()); } //! Effects: Searches for a null-terminated character array as a //! substring of *this, beginning at character pos of *this. size_type find(const CharT* s, size_type pos = 0) const { return find(s, pos, Traits::length(s)); } //! Effects: Searches for the first n characters of s as a substring //! of *this, beginning at character pos of *this. size_type find(const CharT* s, size_type pos, size_type n) const { if (pos + n > size()) return npos; else { pointer finish = this->priv_addr() + this->priv_size(); const const_iterator result = std::search(detail::get_pointer(this->priv_addr() + pos), detail::get_pointer(finish), s, s + n, Eq_traits()); return result != finish ? result - begin() : npos; } } //! Effects: Searches for the character c, beginning at character //! position pos. size_type find(CharT c, size_type pos = 0) const { if (pos >= size()) return npos; else { pointer finish = this->priv_addr() + this->priv_size(); const const_iterator result = std::find_if(this->priv_addr() + pos, finish, std::bind2nd(Eq_traits(), c)); return result != finish ? result - begin() : npos; } } //! Effects: Searches backward for s as a substring of *this, //! beginning at character position min(pos, size()) size_type rfind(const basic_string& s, size_type pos = npos) const { return rfind(s.c_str(), pos, s.size()); } //! Effects: Searches backward for a null-terminated character array //! as a substring of *this, beginning at character min(pos, size()) size_type rfind(const CharT* s, size_type pos = npos) const { return rfind(s, pos, Traits::length(s)); } //! Effects: Searches backward for the first n characters of s as a //! substring of *this, beginning at character position min(pos, size()). size_type rfind(const CharT* s, size_type pos, size_type n) const { const std::size_t len = size(); if (n > len) return npos; else if (n == 0) return min_value(len, pos); else { const const_iterator last = begin() + min_value(len - n, pos) + n; const const_iterator result = find_end(begin(), last, s, s + n, Eq_traits()); return result != last ? result - begin() : npos; } } //! Effects: Searches backward for a null-terminated character array //! as a substring of *this, beginning at character min(pos, size()). size_type rfind(CharT c, size_type pos = npos) const { const size_type len = size(); if (len < 1) return npos; else { const const_iterator last = begin() + min_value(len - 1, pos) + 1; const_reverse_iterator rresult = std::find_if(const_reverse_iterator(last), rend(), std::bind2nd(Eq_traits(), c)); return rresult != rend() ? (rresult.base() - 1) - begin() : npos; } } //! Effects: Searches within *this, beginning at pos, for the first //! character that is equal to any character within s. size_type find_first_of(const basic_string& s, size_type pos = 0) const { return find_first_of(s.c_str(), pos, s.size()); } //! Effects: Searches within *this, beginning at pos, for the first //! character that is equal to any character within s. size_type find_first_of(const CharT* s, size_type pos = 0) const { return find_first_of(s, pos, Traits::length(s)); } //! Effects: Searches within *this, beginning at pos, for the first //! character that is equal to any character within the first n characters of s. size_type find_first_of(const CharT* s, size_type pos, size_type n) const { if (pos >= size()) return npos; else { pointer finish = this->priv_addr() + this->priv_size(); const_iterator result = std::find_first_of(this->priv_addr() + pos, finish, s, s + n, Eq_traits()); return result != finish ? result - begin() : npos; } } //! Effects: Searches within *this, beginning at pos, for the first //! character that is equal to c. size_type find_first_of(CharT c, size_type pos = 0) const { return find(c, pos); } //! Effects: Searches backward within *this, beginning at min(pos, size()), //! for the first character that is equal to any character within s. size_type find_last_of(const basic_string& s, size_type pos = npos) const { return find_last_of(s.c_str(), pos, s.size()); } //! Effects: Searches backward *this, beginning at min(pos, size()), for //! the first character that is equal to any character within s. size_type find_last_of(const CharT* s, size_type pos = npos) const { return find_last_of(s, pos, Traits::length(s)); } //! Effects: Searches backward within *this, beginning at min(pos, size()), //! for the first character that is equal to any character within the first n //! characters of s. size_type find_last_of(const CharT* s, size_type pos, size_type n) const { const size_type len = size(); if (len < 1) return npos; else { const const_iterator last = this->priv_addr() + min_value(len - 1, pos) + 1; const const_reverse_iterator rresult = std::find_first_of(const_reverse_iterator(last), rend(), s, s + n, Eq_traits()); return rresult != rend() ? (rresult.base() - 1) - this->priv_addr() : npos; } } //! Effects: Searches backward *this, beginning at min(pos, size()), for //! the first character that is equal to c. size_type find_last_of(CharT c, size_type pos = npos) const { return rfind(c, pos); } //! Effects: Searches within *this, beginning at pos, for the first //! character that is not equal to any character within s. size_type find_first_not_of(const basic_string& s, size_type pos = 0) const { return find_first_not_of(s.c_str(), pos, s.size()); } //! Effects: Searches within *this, beginning at pos, for the first //! character that is not equal to any character within s. size_type find_first_not_of(const CharT* s, size_type pos = 0) const { return find_first_not_of(s, pos, Traits::length(s)); } //! Effects: Searches within *this, beginning at pos, for the first //! character that is not equal to any character within the first n //! characters of s. size_type find_first_not_of(const CharT* s, size_type pos, size_type n) const { if (pos > size()) return npos; else { pointer finish = this->priv_addr() + this->priv_size(); const_iterator result = std::find_if(this->priv_addr() + pos, finish, Not_within_traits(s, s + n)); return result != finish ? result - this->priv_addr() : npos; } } //! Effects: Searches within *this, beginning at pos, for the first //! character that is not equal to c. size_type find_first_not_of(CharT c, size_type pos = 0) const { if (pos > size()) return npos; else { pointer finish = this->priv_addr() + this->priv_size(); const_iterator result = std::find_if(this->priv_addr() + pos, finish, std::not1(std::bind2nd(Eq_traits(), c))); return result != finish ? result - begin() : npos; } } //! Effects: Searches backward within *this, beginning at min(pos, size()), //! for the first character that is not equal to any character within s. size_type find_last_not_of(const basic_string& s, size_type pos = npos) const { return find_last_not_of(s.c_str(), pos, s.size()); } //! Effects: Searches backward *this, beginning at min(pos, size()), //! for the first character that is not equal to any character within s. size_type find_last_not_of(const CharT* s, size_type pos = npos) const { return find_last_not_of(s, pos, Traits::length(s)); } //! Effects: Searches backward within *this, beginning at min(pos, size()), //! for the first character that is not equal to any character within the first //! n characters of s. size_type find_last_not_of(const CharT* s, size_type pos, size_type n) const { const size_type len = size(); if (len < 1) return npos; else { const const_iterator last = begin() + min_value(len - 1, pos) + 1; const const_reverse_iterator rresult = std::find_if(const_reverse_iterator(last), rend(), Not_within_traits(s, s + n)); return rresult != rend() ? (rresult.base() - 1) - begin() : npos; } } //! Effects: Searches backward *this, beginning at min(pos, size()), //! for the first character that is not equal to c. size_type find_last_not_of(CharT c, size_type pos = npos) const { const size_type len = size(); if (len < 1) return npos; else { const const_iterator last = begin() + min_value(len - 1, pos) + 1; const_reverse_iterator rresult = std::find_if(const_reverse_iterator(last), rend(), std::not1(std::bind2nd(Eq_traits(), c))); return rresult != rend() ? (rresult.base() - 1) - begin() : npos; } } //! Effects: Returns a substring of *this. basic_string substr(size_type pos = 0, size_type n = npos) const { if (pos > size()) this->throw_out_of_range(); return basic_string(this->priv_addr() + pos, this->priv_addr() + pos + min_value(n, size() - pos), this->alloc()); } //! Effects: Three-way lexicographical comparison of s and *this. int compare(const basic_string& s) const { return s_compare(this->priv_addr(), this->priv_addr() + this->priv_size(), s.priv_addr(), s.priv_addr() + s.priv_size()); } //! Effects: Three-way lexicographical comparison of s and a substring //! of *this. int compare(size_type pos1, size_type n1, const basic_string& s) const { if (pos1 > size()) this->throw_out_of_range(); return s_compare(this->priv_addr() + pos1, this->priv_addr() + pos1 + min_value(n1, size() - pos1), s.priv_addr(), s.priv_addr() + s.priv_size()); } //! Effects: Three-way lexicographical comparison of a substring of s //! and a substring of *this. int compare(size_type pos1, size_type n1, const basic_string& s, size_type pos2, size_type n2) const { if (pos1 > size() || pos2 > s.size()) this->throw_out_of_range(); return s_compare(this->priv_addr() + pos1, this->priv_addr() + pos1 + min_value(n1, size() - pos1), s.priv_addr() + pos2, s.priv_addr() + pos2 + min_value(n2, size() - pos2)); } //! Effects: Three-way lexicographical comparison of s and *this. int compare(const CharT* s) const { return s_compare(this->priv_addr(), this->priv_addr() + this->priv_size(), s, s + Traits::length(s)); } //! Effects: Three-way lexicographical comparison of the first //! min(len, traits::length(s) characters of s and a substring of *this. int compare(size_type pos1, size_type n1, const CharT* s, size_type n2 = npos) const { if (pos1 > size()) this->throw_out_of_range(); return s_compare(this->priv_addr() + pos1, this->priv_addr() + pos1 + min_value(n1, size() - pos1), s, s + n2); } /// @cond private: static int s_compare(const_pointer f1, const_pointer l1, const_pointer f2, const_pointer l2) { const std::ptrdiff_t n1 = l1 - f1; const std::ptrdiff_t n2 = l2 - f2; const int cmp = Traits::compare(detail::get_pointer(f1), detail::get_pointer(f2), min_value(n1, n2)); return cmp != 0 ? cmp : (n1 < n2 ? -1 : (n1 > n2 ? 1 : 0)); } void priv_construct_null(pointer p) { this->construct(p, 0); } static CharT priv_null() { return (CharT) 0; } // Helper functions used by constructors. It is a severe error for // any of them to be called anywhere except from within constructors. void priv_terminate_string() { this->priv_construct_null(this->priv_addr() + this->priv_size()); } template void priv_range_initialize(InputIter f, InputIter l, std::input_iterator_tag) { this->allocate_initial_block(InternalBufferChars); this->priv_construct_null(this->priv_addr() + this->priv_size()); this->append(f, l); } template void priv_range_initialize(ForwardIter f, ForwardIter l, std::forward_iterator_tag) { difference_type n = std::distance(f, l); this->allocate_initial_block(max_value(n+1, InternalBufferChars)); priv_uninitialized_copy(f, l, this->priv_addr()); this->priv_size(n); this->priv_terminate_string(); } template void priv_range_initialize(InputIter f, InputIter l) { typedef typename std::iterator_traits::iterator_category Category; this->priv_range_initialize(f, l, Category()); } template void priv_initialize_dispatch(Integer n, Integer x, detail::true_) { this->allocate_initial_block(max_value(n+1, InternalBufferChars)); priv_uninitialized_fill_n(this->priv_addr(), n, x); this->priv_size(n); this->priv_terminate_string(); } template void priv_initialize_dispatch(InputIter f, InputIter l, detail::false_) { this->priv_range_initialize(f, l); } template inline void priv_uninitialized_fill_n(FwdIt first, Count count, const CharT val) { //Save initial position FwdIt init = first; BOOST_TRY{ //Construct objects for (; count--; ++first){ this->construct(first, val); } } BOOST_CATCH(...){ //Call destructors for (; init != first; ++init){ this->destroy(init); } BOOST_RETHROW } BOOST_CATCH_END } template inline size_type priv_uninitialized_copy(InpIt first, InpIt last, FwdIt dest) { //Save initial destination position FwdIt dest_init = dest; size_type constructed = 0; BOOST_TRY{ //Try to build objects for (; first != last; ++dest, ++first, ++constructed){ this->construct(dest, *first); } } BOOST_CATCH(...){ //Call destructors for (; constructed--; ++dest_init){ this->destroy(dest_init); } BOOST_RETHROW } BOOST_CATCH_END return (constructed); } template basic_string& priv_assign_dispatch(Integer n, Integer x, detail::true_) { return this->assign((size_type) n, (CharT) x); } template basic_string& priv_assign_dispatch(InputIter f, InputIter l, detail::false_) { size_type cur = 0; CharT *ptr = detail::get_pointer(this->priv_addr()); while (f != l && cur != this->priv_size()) { Traits::assign(*ptr, *f); ++f; ++cur; ++ptr; } if (f == l) this->erase(this->priv_addr() + cur, this->priv_addr() + this->priv_size()); else this->append(f, l); return *this; } template void priv_insert(iterator p, InputIter first, InputIter last, std::input_iterator_tag) { for ( ; first != last; ++first, ++p) { p = this->insert(p, *first); } } template void priv_insert(iterator position, ForwardIter first, ForwardIter last, std::forward_iterator_tag) { if (first != last) { size_type n = std::distance(first, last); size_type remaining = this->capacity() - this->priv_size(); const size_type old_size = this->size(); pointer old_start = this->priv_addr(); bool enough_capacity = false; std::pair allocation_ret; size_type new_cap = 0; //Check if we have enough capacity if (remaining >= n){ enough_capacity = true; } else { //Otherwise expand current buffer or allocate new storage new_cap = this->next_capacity(n); allocation_ret = this->allocation_command (allocate_new | expand_fwd | expand_bwd, old_size + n + 1, new_cap, new_cap, old_start); //Check forward expansion if(old_start == allocation_ret.first){ enough_capacity = true; this->priv_storage(new_cap); } } //Reuse same buffer if(enough_capacity){ const size_type elems_after = this->priv_size() - (position - this->priv_addr()); size_type old_length = this->priv_size(); if (elems_after >= n) { pointer pointer_past_last = this->priv_addr() + this->priv_size() + 1; priv_uninitialized_copy(this->priv_addr() + (this->priv_size() - n + 1), pointer_past_last, pointer_past_last); this->priv_size(this->priv_size()+n); Traits::move(detail::get_pointer(position + n), detail::get_pointer(position), (elems_after - n) + 1); this->priv_copy(first, last, position); } else { ForwardIter mid = first; std::advance(mid, elems_after + 1); priv_uninitialized_copy(mid, last, this->priv_addr() + this->priv_size() + 1); this->priv_size(this->priv_size() + (n - elems_after)); priv_uninitialized_copy (position, this->priv_addr() + old_length + 1, this->priv_addr() + this->priv_size()); this->priv_size(this->priv_size() + elems_after); this->priv_copy(first, mid, position); } } else{ pointer new_start = allocation_ret.first; if(!allocation_ret.second){ //Copy data to new buffer size_type new_length = 0; //This can't throw, since characters are POD new_length += priv_uninitialized_copy (this->priv_addr(), position, new_start); new_length += priv_uninitialized_copy (first, last, new_start + new_length); new_length += priv_uninitialized_copy (position, this->priv_addr() + this->priv_size(), new_start + new_length); this->priv_construct_null(new_start + new_length); this->deallocate_block(); this->is_short(false); this->priv_addr(new_start); this->priv_size(new_length); this->priv_storage(new_cap); } else{ //value_type is POD, so backwards expansion is much easier //than with vector value_type *oldbuf = detail::get_pointer(old_start); value_type *newbuf = detail::get_pointer(new_start); value_type *pos = detail::get_pointer(position); size_type before = pos - oldbuf; //First move old data Traits::move(newbuf, oldbuf, before); Traits::move(newbuf + before + n, pos, old_size - before); //Now initialize the new data priv_uninitialized_copy(first, last, new_start + before); this->priv_construct_null(new_start + (old_size + n)); this->is_short(false); this->priv_addr(new_start); this->priv_size(old_size + n); this->priv_storage(new_cap); } } } } template void priv_insert_dispatch(iterator p, Integer n, Integer x, detail::true_) { insert(p, (size_type) n, (CharT) x); } template void priv_insert_dispatch(iterator p, InputIter first, InputIter last, detail::false_) { typedef typename std::iterator_traits::iterator_category Category; priv_insert(p, first, last, Category()); } template void priv_copy(InputIterator first, InputIterator last, iterator result) { for ( ; first != last; ++first, ++result) Traits::assign(*result, *first); } void priv_copy(const CharT* first, const CharT* last, CharT* result) { Traits::copy(result, first, last - first); } template basic_string& priv_replace_dispatch(iterator first, iterator last, Integer n, Integer x, detail::true_) { return this->replace(first, last, (size_type) n, (CharT) x); } template basic_string& priv_replace_dispatch(iterator first, iterator last, InputIter f, InputIter l, detail::false_) { typedef typename std::iterator_traits::iterator_category Category; return this->priv_replace(first, last, f, l, Category()); } template basic_string& priv_replace(iterator first, iterator last, InputIter f, InputIter l, std::input_iterator_tag) { for ( ; first != last && f != l; ++first, ++f) Traits::assign(*first, *f); if (f == l) this->erase(first, last); else this->insert(last, f, l); return *this; } template basic_string& priv_replace(iterator first, iterator last, ForwardIter f, ForwardIter l, std::forward_iterator_tag) { difference_type n = std::distance(f, l); const difference_type len = last - first; if (len >= n) { this->priv_copy(f, l, first); this->erase(first + n, last); } else { ForwardIter m = f; std::advance(m, len); this->priv_copy(f, m, first); this->insert(last, m, l); } return *this; } /// @endcond }; template const typename basic_string::size_type basic_string::npos = (typename basic_string::size_type) -1; // ------------------------------------------------------------ // Non-member functions. // Operator+ template inline basic_string operator+(const basic_string& x, const basic_string& y) { typedef basic_string str_t; typedef typename str_t::reserve_t reserve_t; reserve_t reserve; str_t result(reserve, x.size() + y.size(), x.alloc()); result.append(x); result.append(y); return result; } #ifndef BOOST_INTERPROCESS_RVALUE_REFERENCE template inline detail::moved_object > operator+(const detail::moved_object >& mx, const basic_string& y) { mx.get() += y; return mx; } #else template basic_string && operator+(basic_string && mx, const basic_string& y) { mx += y; return move(mx); } #endif #ifndef BOOST_INTERPROCESS_RVALUE_REFERENCE template inline detail::moved_object > operator+(const basic_string& x, const detail::moved_object >& my) { typedef typename basic_string::size_type size_type; return my.get().replace(size_type(0), size_type(0), x); } #else template inline basic_string && operator+(const basic_string& x, basic_string && my) { typedef typename basic_string::size_type size_type; return my.replace(size_type(0), size_type(0), x); } #endif template inline basic_string operator+(const CharT* s, const basic_string& y) { typedef basic_string str_t; typedef typename str_t::reserve_t reserve_t; reserve_t reserve; const std::size_t n = Traits::length(s); str_t result(reserve, n + y.size()); result.append(s, s + n); result.append(y); return result; } #ifndef BOOST_INTERPROCESS_RVALUE_REFERENCE template inline detail::moved_object > operator+(const CharT* s, const detail::moved_object >& my) { typedef typename basic_string::size_type size_type; return my.get().replace(size_type(0), size_type(0), s); } #else template inline basic_string && operator+(const CharT* s, basic_string && my) { typedef typename basic_string::size_type size_type; return move(my.get().replace(size_type(0), size_type(0), s)); } #endif template inline basic_string operator+(CharT c, const basic_string& y) { typedef basic_string str_t; typedef typename str_t::reserve_t reserve_t; reserve_t reserve; str_t result(reserve, 1 + y.size()); result.push_back(c); result.append(y); return result; } #ifndef BOOST_INTERPROCESS_RVALUE_REFERENCE template inline detail::moved_object > operator+(CharT c, const detail::moved_object >& my) { typedef typename basic_string::size_type size_type; return my.get().replace(size_type(0), size_type(0), &c, &c + 1); } #else template inline basic_string && operator+(CharT c, basic_string && my) { typedef typename basic_string::size_type size_type; return my.replace(size_type(0), size_type(0), &c, &c + 1); } #endif template inline basic_string operator+(const basic_string& x, const CharT* s) { typedef basic_string str_t; typedef typename str_t::reserve_t reserve_t; reserve_t reserve; const std::size_t n = Traits::length(s); str_t result(reserve, x.size() + n, x.alloc()); result.append(x); result.append(s, s + n); return result; } #ifndef BOOST_INTERPROCESS_RVALUE_REFERENCE template inline detail::moved_object > operator+(const detail::moved_object >& mx, const CharT* s) { mx.get() += s; return mx; } #else template basic_string && operator+(basic_string && mx, const CharT* s) { mx += s; return move(mx); } #endif template inline basic_string operator+(const basic_string& x, const CharT c) { typedef basic_string str_t; typedef typename str_t::reserve_t reserve_t; reserve_t reserve; str_t result(reserve, x.size() + 1, x.alloc()); result.append(x); result.push_back(c); return result; } #ifndef BOOST_INTERPROCESS_RVALUE_REFERENCE template inline detail::moved_object > operator+(const detail::moved_object >& mx, const CharT c) { mx.get() += c; return mx; } #else template basic_string && operator+(basic_string && mx, const CharT c) { mx += c; return move(mx); } #endif // Operator== and operator!= template inline bool operator==(const basic_string& x, const basic_string& y) { return x.size() == y.size() && Traits::compare(x.data(), y.data(), x.size()) == 0; } template inline bool operator==(const CharT* s, const basic_string& y) { std::size_t n = Traits::length(s); return n == y.size() && Traits::compare(s, y.data(), n) == 0; } template inline bool operator==(const basic_string& x, const CharT* s) { std::size_t n = Traits::length(s); return x.size() == n && Traits::compare(x.data(), s, n) == 0; } template inline bool operator!=(const basic_string& x, const basic_string& y) { return !(x == y); } template inline bool operator!=(const CharT* s, const basic_string& y) { return !(s == y); } template inline bool operator!=(const basic_string& x, const CharT* s) { return !(x == s); } // Operator< (and also >, <=, and >=). template inline bool operator<(const basic_string& x, const basic_string& y) { return x.compare(y) < 0; // return basic_string // ::s_compare(x.begin(), x.end(), y.begin(), y.end()) < 0; } template inline bool operator<(const CharT* s, const basic_string& y) { return y.compare(s) > 0; // std::size_t n = Traits::length(s); // return basic_string // ::s_compare(s, s + n, y.begin(), y.end()) < 0; } template inline bool operator<(const basic_string& x, const CharT* s) { return x.compare(s) < 0; // std::size_t n = Traits::length(s); // return basic_string // ::s_compare(x.begin(), x.end(), s, s + n) < 0; } template inline bool operator>(const basic_string& x, const basic_string& y) { return y < x; } template inline bool operator>(const CharT* s, const basic_string& y) { return y < s; } template inline bool operator>(const basic_string& x, const CharT* s) { return s < x; } template inline bool operator<=(const basic_string& x, const basic_string& y) { return !(y < x); } template inline bool operator<=(const CharT* s, const basic_string& y) { return !(y < s); } template inline bool operator<=(const basic_string& x, const CharT* s) { return !(s < x); } template inline bool operator>=(const basic_string& x, const basic_string& y) { return !(x < y); } template inline bool operator>=(const CharT* s, const basic_string& y) { return !(s < y); } template inline bool operator>=(const basic_string& x, const CharT* s) { return !(x < s); } // Swap. #ifndef BOOST_INTERPROCESS_RVALUE_REFERENCE template inline void swap(basic_string& x, basic_string& y) { x.swap(y); } template inline void swap(const detail::moved_object >& mx, basic_string& y) { mx.get().swap(y); } template inline void swap(basic_string& x, const detail::moved_object >& my) { x.swap(my.get()); } #else template inline void swap(basic_string && x, basic_string &&y) { x.swap(y); } #endif /// @cond // I/O. namespace detail { template inline bool interprocess_string_fill(std::basic_ostream& os, std::basic_streambuf* buf, std::size_t n) { CharT f = os.fill(); std::size_t i; bool ok = true; for (i = 0; i < n; i++) ok = ok && !Traits::eq_int_type(buf->sputc(f), Traits::eof()); return ok; } } //namespace detail { /// @endcond template std::basic_ostream& operator<<(std::basic_ostream& os, #ifndef BOOST_INTERPROCESS_RVALUE_REFERENCE const basic_string& s) #else const basic_string&&s) #endif { typename std::basic_ostream::sentry sentry(os); bool ok = false; if (sentry) { ok = true; std::size_t n = s.size(); std::size_t pad_len = 0; const bool left = (os.flags() & std::ios::left) != 0; const std::size_t w = os.width(0); std::basic_streambuf* buf = os.rdbuf(); if (w != 0 && n < w) pad_len = w - n; if (!left) ok = detail::interprocess_string_fill(os, buf, pad_len); ok = ok && buf->sputn(s.data(), std::streamsize(n)) == std::streamsize(n); if (left) ok = ok && detail::interprocess_string_fill(os, buf, pad_len); } if (!ok) os.setstate(std::ios_base::failbit); return os; } #ifndef BOOST_INTERPROCESS_RVALUE_REFERENCE template std::basic_ostream& operator<<(std::basic_ostream& os, const detail::moved_object >& ms) { return os << ms.get(); } #endif template std::basic_istream& operator>>(std::basic_istream& is, #ifndef BOOST_INTERPROCESS_RVALUE_REFERENCE basic_string& s) #else basic_string&&s) #endif { typename std::basic_istream::sentry sentry(is); if (sentry) { std::basic_streambuf* buf = is.rdbuf(); const std::ctype& ctype = std::use_facet >(is.getloc()); s.clear(); std::size_t n = is.width(0); if (n == 0) n = static_cast(-1); else s.reserve(n); while (n-- > 0) { typename Traits::int_type c1 = buf->sbumpc(); if (Traits::eq_int_type(c1, Traits::eof())) { is.setstate(std::ios_base::eofbit); break; } else { CharT c = Traits::to_char_type(c1); if (ctype.is(std::ctype::space, c)) { if (Traits::eq_int_type(buf->sputbackc(c), Traits::eof())) is.setstate(std::ios_base::failbit); break; } else s.push_back(c); } } // If we have read no characters, then set failbit. if (s.size() == 0) is.setstate(std::ios_base::failbit); } else is.setstate(std::ios_base::failbit); return is; } #ifndef BOOST_INTERPROCESS_RVALUE_REFERENCE template std::basic_istream& operator>>(std::basic_istream& is, const detail::moved_object >& ms) { return is >> ms.get(); } #endif template std::basic_istream& getline(std::istream& is, #ifndef BOOST_INTERPROCESS_RVALUE_REFERENCE basic_string& s, #else basic_string&&s, #endif CharT delim) { std::size_t nread = 0; typename std::basic_istream::sentry sentry(is, true); if (sentry) { std::basic_streambuf* buf = is.rdbuf(); s.clear(); int c1; while (nread < s.max_size()) { int c1 = buf->sbumpc(); if (Traits::eq_int_type(c1, Traits::eof())) { is.setstate(std::ios_base::eofbit); break; } else { ++nread; CharT c = Traits::to_char_type(c1); if (!Traits::eq(c, delim)) s.push_back(c); else break; // Character is extracted but not appended. } } } if (nread == 0 || nread >= s.max_size()) is.setstate(std::ios_base::failbit); return is; } #ifndef BOOST_INTERPROCESS_RVALUE_REFERENCE template std::basic_istream& getline(std::istream& is, const detail::moved_object >& ms, CharT delim) { return getline(is, ms.get(), delim); } #endif #ifndef BOOST_INTERPROCESS_RVALUE_REFERENCE template inline std::basic_istream& getline(std::basic_istream& is, basic_string& s) { return getline(is, s, '\n'); } template std::basic_istream& getline(std::istream& is, const detail::moved_object >& ms) { return getline(is, ms.get()); } #else template std::basic_istream& getline(std::istream& is, basic_string && ms) { return getline(is, ms); } #endif template inline std::size_t hash_value(basic_string, A> const& v) { return hash_range(v.begin(), v.end()); } /// @cond //!This class is movable template struct is_movable > { enum { value = true }; }; //!This class is movable template struct is_movable > { enum { value = true }; }; //!has_trivial_destructor_after_move<> == true_type //!specialization for optimizations template struct has_trivial_destructor_after_move > { enum { value = has_trivial_destructor::value }; }; /// @endcond }} //namespace boost { namespace interprocess #include #endif // BOOST_INTERPROCESS_STRING_HPP