///////////////////////////////////////////////////////////////////////////// // // (C) Copyright Ion Gaztanaga 2006-2007 // // Distributed under the Boost Software License, Version 1.0. // (See accompanying file LICENSE_1_0.txt or copy at // http://www.boost.org/LICENSE_1_0.txt) // // See http://www.boost.org/libs/intrusive for documentation. // ///////////////////////////////////////////////////////////////////////////// #ifndef BOOST_INTRUSIVE_HASHTABLE_HPP #define BOOST_INTRUSIVE_HASHTABLE_HPP #include //std C++ #include #include #include #include //boost #include #include #include #include //General intrusive utilities #include #include #include #include #include #include //Implementation utilities #include #include #include namespace boost { namespace intrusive { /// @cond namespace detail{ template struct store_hash_bool { template struct two_or_three {one _[2 + Add];}; template static one test(...); template static two_or_three test (detail::bool_* = 0); static const std::size_t value = sizeof(test(0)); }; template struct store_hash_is_true { static const bool value = store_hash_bool::value > sizeof(one)*2; }; template struct bucket_plus_size : public detail::size_holder < Config::constant_time_size , typename Config::size_type> { typedef detail::size_holder < Config::constant_time_size , typename Config::size_type> size_traits; typedef typename Config::bucket_traits bucket_traits; bucket_plus_size(const bucket_traits &b_traits) : bucket_traits_(b_traits) {} bucket_traits bucket_traits_; }; template struct bucket_hash_t : public detail::ebo_functor_holder { typedef typename Config::hash hasher; typedef detail::size_holder < Config::constant_time_size , typename Config::size_type> size_traits; typedef typename Config::bucket_traits bucket_traits; bucket_hash_t(const bucket_traits &b_traits, const hasher & h) : detail::ebo_functor_holder(h), bucket_plus_size_(b_traits) {} bucket_plus_size bucket_plus_size_; }; template struct bucket_hash_equal_t : public detail::ebo_functor_holder { typedef typename Config::equal equal; typedef typename Config::hash hasher; typedef typename Config::bucket_traits bucket_traits; bucket_hash_equal_t(const bucket_traits &b_traits, const hasher & h, const equal &e) : detail::ebo_functor_holder(e), bucket_hash(b_traits, h) {} bucket_hash_t bucket_hash; }; template struct data_t : public Config::value_traits { typedef typename Config::value_traits value_traits; typedef typename Config::equal equal; typedef typename Config::hash hasher; typedef typename Config::bucket_traits bucket_traits; data_t( const bucket_traits &b_traits, const hasher & h , const equal &e, const value_traits &val_traits) : Config::value_traits(val_traits), bucket_hash_equal_(b_traits, h, e) {} bucket_hash_equal_t bucket_hash_equal_; }; } //namespace detail { template struct internal_default_uset_hook { template static detail::one test(...); template static detail::two test(typename U::default_uset_hook* = 0); static const bool value = sizeof(test(0)) == sizeof(detail::two); }; template struct get_default_uset_hook { typedef typename T::default_uset_hook type; }; template < class ValueTraits , class Hash , class Equal , class SizeType , bool ConstantTimeSize , class BucketTraits , bool Power2Buckets > struct usetopt { typedef ValueTraits value_traits; typedef Hash hash; typedef Equal equal; typedef SizeType size_type; typedef BucketTraits bucket_traits; static const bool constant_time_size = ConstantTimeSize; static const bool power_2_buckets = Power2Buckets; }; struct default_bucket_traits; template struct uset_defaults : pack_options < none , base_hook < typename detail::eval_if_c < internal_default_uset_hook::value , get_default_uset_hook , detail::identity >::type > , constant_time_size , size_type , equal > , hash > , bucket_traits , power_2_buckets >::type {}; template struct get_slist_impl { typedef trivial_value_traits trivial_traits; //Reducing symbol length struct type : make_slist < typename NodeTraits::node , boost::intrusive::value_traits , boost::intrusive::constant_time_size , boost::intrusive::size_type >::type {}; }; /// @endcond template struct unordered_bucket { /// @cond typedef typename ValueTraitsOrHookOption:: template pack::value_traits supposed_value_traits; typedef typename detail::eval_if_c < detail::external_value_traits_is_true ::value , detail::eval_value_traits , detail::identity >::type real_value_traits; typedef typename detail::get_node_traits ::type node_traits; typedef typename get_slist_impl ::type slist_impl; typedef detail::bucket_impl implementation_defined; /// @endcond typedef implementation_defined type; }; template struct unordered_bucket_ptr { /// @cond typedef typename ValueTraitsOrHookOption:: template pack::value_traits supposed_value_traits; typedef typename detail::eval_if_c < detail::external_value_traits_is_true ::value , detail::eval_value_traits , detail::identity >::type real_value_traits; typedef typename detail::get_node_traits ::type::node_ptr node_ptr; typedef typename unordered_bucket ::type bucket_type; typedef typename boost::pointer_to_other ::type implementation_defined; /// @endcond typedef implementation_defined type; }; //! The class template hashtable is an intrusive hash table container, that //! is used to construct intrusive unordered_set and unordered_multiset containers. The //! no-throw guarantee holds only, if the Equal object and Hasher don't throw. //! //! hashtable is a pseudo-intrusive container: each object to be stored in the //! container must contain a proper hook, but the container also needs //! additional auxiliary memory to work: hashtable needs a pointer to an array //! of type `bucket_type` to be passed in the constructor. This bucket array must //! have at least the same lifetime as the container. This makes the use of //! hashtable more complicated than purely intrusive containers. //! `bucket_type` is default-constructible, copyable and assignable //! //! The template parameter \c T is the type to be managed by the container. //! The user can specify additional options and if no options are provided //! default options are used. //! //! The container supports the following options: //! \c base_hook<>/member_hook<>/value_traits<>, //! \c constant_time_size<>, \c size_type<>, \c hash<> and \c equal<> . //! //! hashtable only provides forward iterators but it provides 4 iterator types: //! iterator and const_iterator to navigate through the whole container and //! local_iterator and const_local_iterator to navigate through the values //! stored in a single bucket. Local iterators are faster and smaller. //! //! It's not recommended to use non constant-time size hashtables because several //! key functions, like "empty()", become non-constant time functions. Non //! constant_time size hashtables are mainly provided to support auto-unlink hooks. //! //! hashtables, does not make automatic rehashings nor //! offers functions related to a load factor. Rehashing can be explicitly requested //! and the user must provide a new bucket array that will be used from that moment. //! //! Since no automatic rehashing is done, iterators are never invalidated when //! inserting or erasing elements. Iterators are only invalidated when rehashing. #ifdef BOOST_INTRUSIVE_DOXYGEN_INVOKED template #else template #endif class hashtable_impl : private detail::data_t { public: typedef typename Config::value_traits value_traits; /// @cond static const bool external_value_traits = detail::external_value_traits_is_true::value; typedef typename detail::eval_if_c < external_value_traits , detail::eval_value_traits , detail::identity >::type real_value_traits; typedef typename Config::bucket_traits bucket_traits; static const bool external_bucket_traits = detail::external_bucket_traits_is_true::value; typedef typename detail::eval_if_c < external_bucket_traits , detail::eval_bucket_traits , detail::identity >::type real_bucket_traits; typedef typename get_slist_impl ::type slist_impl; /// @endcond typedef typename real_value_traits::pointer pointer; typedef typename real_value_traits::const_pointer const_pointer; typedef typename std::iterator_traits::value_type value_type; typedef typename std::iterator_traits::reference reference; typedef typename std::iterator_traits::reference const_reference; typedef typename std::iterator_traits::difference_type difference_type; typedef typename Config::size_type size_type; typedef value_type key_type; typedef typename Config::equal key_equal; typedef typename Config::hash hasher; typedef detail::bucket_impl bucket_type; typedef typename boost::pointer_to_other ::type bucket_ptr; typedef typename slist_impl::iterator siterator; typedef typename slist_impl::const_iterator const_siterator; typedef detail::hashtable_iterator iterator; typedef detail::hashtable_iterator const_iterator; typedef typename real_value_traits::node_traits node_traits; typedef typename node_traits::node node; typedef typename boost::pointer_to_other ::type node_ptr; typedef typename boost::pointer_to_other ::type const_node_ptr; typedef typename slist_impl::node_algorithms node_algorithms; static const bool constant_time_size = Config::constant_time_size; static const bool stateful_value_traits = detail::store_cont_ptr_on_it::value; static const bool store_hash = detail::store_hash_is_true::value; /// @cond private: typedef detail::bool_ store_hash_t; typedef detail::size_holder size_traits; typedef detail::data_t base_type; typedef detail::transform_iterator < typename slist_impl::iterator , detail::node_to_value > local_iterator_impl; typedef detail::transform_iterator < typename slist_impl::iterator , detail::node_to_value > const_local_iterator_impl; //noncopyable hashtable_impl (const hashtable_impl&); hashtable_impl operator =(const hashtable_impl&); enum { safemode_or_autounlink = (int)real_value_traits::link_mode == (int)auto_unlink || (int)real_value_traits::link_mode == (int)safe_link }; //Constant-time size is incompatible with auto-unlink hooks! BOOST_STATIC_ASSERT(!(constant_time_size && ((int)real_value_traits::link_mode == (int)auto_unlink))); static const bool power_2_buckets = Config::power_2_buckets; std::size_t from_hash_to_bucket(std::size_t hash_value) const { return from_hash_to_bucket(hash_value, detail::bool_()); } std::size_t from_hash_to_bucket(std::size_t hash_value, detail::bool_) const { return hash_value % this->get_real_bucket_traits().bucket_count(); } std::size_t from_hash_to_bucket(std::size_t hash_value, detail::bool_) const { return hash_value & (this->get_real_bucket_traits().bucket_count() - 1); } const key_equal &priv_equal() const { return static_cast(this->bucket_hash_equal_.get()); } key_equal &priv_equal() { return static_cast(this->bucket_hash_equal_.get()); } const real_bucket_traits &get_real_bucket_traits(detail::bool_) const { return this->bucket_hash_equal_.bucket_hash.bucket_plus_size_.bucket_traits_; } const real_bucket_traits &get_real_bucket_traits(detail::bool_) const { return this->bucket_hash_equal_.bucket_hash.bucket_plus_size_.bucket_traits_.get_bucket_traits(*this); } real_bucket_traits &get_real_bucket_traits(detail::bool_) { return this->bucket_hash_equal_.bucket_hash.bucket_plus_size_.bucket_traits_; } real_bucket_traits &get_real_bucket_traits(detail::bool_) { return this->bucket_hash_equal_.bucket_hash.bucket_plus_size_.bucket_traits_.get_bucket_traits(*this); } const real_bucket_traits &get_real_bucket_traits() const { return this->get_real_bucket_traits(detail::bool_()); } real_bucket_traits &get_real_bucket_traits() { return this->get_real_bucket_traits(detail::bool_()); } const hasher &priv_hasher() const { return static_cast(this->bucket_hash_equal_.bucket_hash.get()); } hasher &priv_hasher() { return static_cast(this->bucket_hash_equal_.bucket_hash.get()); } bucket_ptr priv_buckets() const { return this->get_real_bucket_traits().bucket_begin(); } size_type priv_buckets_len() const { return this->get_real_bucket_traits().bucket_count(); } static node_ptr uncast(const_node_ptr ptr) { return node_ptr(const_cast(detail::get_pointer(ptr))); } node &from_value_to_node(value_type &v) { return *this->get_real_value_traits().to_node_ptr(v); } const node &from_value_to_node(const value_type &v) const { return *this->get_real_value_traits().to_node_ptr(v); } size_traits &priv_size_traits() { return this->bucket_hash_equal_.bucket_hash.bucket_plus_size_; } const size_traits &priv_size_traits() const { return this->bucket_hash_equal_.bucket_hash.bucket_plus_size_; } struct insert_commit_data_impl { size_type hash; }; /// @endcond public: class local_iterator : public local_iterator_impl { public: local_iterator() {} local_iterator(siterator sit, const hashtable_impl *cont) : local_iterator_impl(sit, cont) {} }; class const_local_iterator : public const_local_iterator_impl { public: const_local_iterator() {} const_local_iterator(siterator sit, const hashtable_impl *cont) : const_local_iterator_impl(sit, cont) {} }; typedef insert_commit_data_impl insert_commit_data; /// @cond const real_value_traits &get_real_value_traits(detail::bool_) const { return *this; } const real_value_traits &get_real_value_traits(detail::bool_) const { return base_type::get_value_traits(*this); } real_value_traits &get_real_value_traits(detail::bool_) { return *this; } real_value_traits &get_real_value_traits(detail::bool_) { return base_type::get_value_traits(*this); } /// @endcond public: const real_value_traits &get_real_value_traits() const { return this->get_real_value_traits(detail::bool_()); } real_value_traits &get_real_value_traits() { return this->get_real_value_traits(detail::bool_()); } //! Requires: buckets must not be being used by any other resource. //! //! Effects: Constructs an empty unordered_set, storing a reference //! to the bucket array and copies of the key_hasher and equal_func functors. //! //! Complexity: Constant. //! //! Throws: If value_traits::node_traits::node //! constructor throws (this does not happen with predefined Boost.Intrusive hooks) //! or the copy constructor or invocation of hash_func or equal_func throws. //! //! Notes: buckets array must be disposed only after //! *this is disposed. hashtable_impl ( const bucket_traits &b_traits , const hasher & hash_func = hasher() , const key_equal &equal_func = key_equal() , const value_traits &v_traits = value_traits()) : base_type(b_traits, hash_func, equal_func, v_traits) { priv_clear_buckets(); this->priv_size_traits().set_size(size_type(0)); BOOST_INTRUSIVE_INVARIANT_ASSERT(this->priv_buckets_len() != 0); //Check power of two bucket array if the option is activated BOOST_INTRUSIVE_INVARIANT_ASSERT (!power_2_buckets || (0 == (this->priv_buckets_len() & (this->priv_buckets_len()-1)))); } //! Effects: Detaches all elements from this. The objects in the unordered_set //! are not deleted (i.e. no destructors are called). //! //! Complexity: Linear to the number of elements in the unordered_set, if //! it's a safe-mode or auto-unlink value. Otherwise constant. //! //! Throws: Nothing. ~hashtable_impl() { this->clear(); } //! Effects: Returns an iterator pointing to the beginning of the unordered_set. //! //! Complexity: Amortized constant time. //! Worst case (empty unordered_set): O(this->bucket_count()) //! //! Throws: Nothing. iterator begin() { size_type bucket_num; return iterator(this->priv_begin(bucket_num), this); } //! Effects: Returns a const_iterator pointing to the beginning //! of the unordered_set. //! //! Complexity: Amortized constant time. //! Worst case (empty unordered_set): O(this->bucket_count()) //! //! Throws: Nothing. const_iterator begin() const { return this->cbegin(); } //! Effects: Returns a const_iterator pointing to the beginning //! of the unordered_set. //! //! Complexity: Amortized constant time. //! Worst case (empty unordered_set): O(this->bucket_count()) //! //! Throws: Nothing. const_iterator cbegin() const { size_type bucket_num; return const_iterator(this->priv_begin(bucket_num), this); } //! Effects: Returns an iterator pointing to the end of the unordered_set. //! //! Complexity: Constant. //! //! Throws: Nothing. iterator end() { return iterator(invalid_local_it(this->get_real_bucket_traits()), 0); } //! Effects: Returns a const_iterator pointing to the end of the unordered_set. //! //! Complexity: Constant. //! //! Throws: Nothing. const_iterator end() const { return this->cend(); } //! Effects: Returns a const_iterator pointing to the end of the unordered_set. //! //! Complexity: Constant. //! //! Throws: Nothing. const_iterator cend() const { return const_iterator(invalid_local_it(this->get_real_bucket_traits()), 0); } //! Effects: Returns the hasher object used by the unordered_set. //! //! Complexity: Constant. //! //! Throws: If hasher copy-constructor throws. hasher hash_function() const { return this->priv_hasher(); } //! Effects: Returns the key_equal object used by the unordered_set. //! //! Complexity: Constant. //! //! Throws: If key_equal copy-constructor throws. key_equal key_eq() const { return this->priv_equal(); } //! Effects: Returns true is the container is empty. //! //! Complexity: if constant_time_size is false, average constant time //! (worst case, with empty() == true): O(this->bucket_count()). //! Otherwise constant. //! //! Throws: Nothing. bool empty() const { if(constant_time_size){ return !this->size(); } else{ size_type buckets_len = this->priv_buckets_len(); const bucket_type *b = detail::get_pointer(this->priv_buckets()); for (size_type n = 0; n < buckets_len; ++n, ++b){ if(!b->empty()){ return false; } } return true; } } //! Effects: Returns the number of elements stored in the unordered_set. //! //! Complexity: Linear to elements contained in *this if //! constant_time_size is false. Constant-time otherwise. //! //! Throws: Nothing. size_type size() const { if(constant_time_size) return this->priv_size_traits().get_size(); else{ size_type len = 0; size_type buckets_len = this->priv_buckets_len(); const bucket_type *b = detail::get_pointer(this->priv_buckets()); for (size_type n = 0; n < buckets_len; ++n, ++b){ len += b->size(); } return len; } } //! Requires: the hasher and the equality function unqualified swap //! call should not throw. //! //! Effects: Swaps the contents of two unordered_sets. //! Swaps also the contained bucket array and equality and hasher functors. //! //! Complexity: Constant. //! //! Throws: If the swap() call for the comparison or hash functors //! found using ADL throw. Basic guarantee. void swap(hashtable_impl& other) { using std::swap; //These can throw swap(this->priv_equal(), other.priv_equal()); swap(this->priv_hasher(), other.priv_hasher()); //These can't throw swap(this->get_real_bucket_traits(), other.get_real_bucket_traits()); if(constant_time_size){ size_type backup = this->priv_size_traits().get_size(); this->priv_size_traits().set_size(other.priv_size_traits().get_size()); other.priv_size_traits().set_size(backup); } } //! Requires: Disposer::operator()(pointer) shouldn't throw. //! //! Effects: Erases all the elements from *this //! calling Disposer::operator()(pointer), clones all the //! elements from src calling Cloner::operator()(const_reference ) //! and inserts them on *this. //! //! If cloner throws, all cloned elements are unlinked and disposed //! calling Disposer::operator()(pointer). //! //! Complexity: Linear to erased plus inserted elements. //! //! Throws: If cloner throws. Basic guarantee. template void clone_from(const hashtable_impl &src, Cloner cloner, Disposer disposer) { this->clear_and_dispose(disposer); if(!constant_time_size || !src.empty()){ const size_type src_bucket_count = src.bucket_count(); const size_type dst_bucket_count = this->bucket_count(); //Check power of two bucket array if the option is activated BOOST_INTRUSIVE_INVARIANT_ASSERT (!power_2_buckets || (0 == (src_bucket_count & (src_bucket_count-1)))); BOOST_INTRUSIVE_INVARIANT_ASSERT (!power_2_buckets || (0 == (dst_bucket_count & (dst_bucket_count-1)))); //If src bucket count is bigger or equal, structural copy is possible if(src_bucket_count >= dst_bucket_count){ //First clone the first ones const bucket_ptr src_buckets = src.priv_buckets(); const bucket_ptr dst_buckets = this->priv_buckets(); size_type constructed; BOOST_INTRUSIVE_TRY{ for( constructed = 0 ; constructed < dst_bucket_count ; ++constructed){ dst_buckets[constructed].clone_from ( src_buckets[constructed] , detail::node_cloner(cloner, this) , detail::node_disposer(disposer, this) ); } if(src_bucket_count != dst_bucket_count){ //Now insert the remaining ones using the modulo trick for(//"constructed" comes from the previous loop ; constructed < src_bucket_count ; ++constructed){ bucket_type &dst_b = (power_2_buckets) ? dst_buckets[constructed & (dst_bucket_count-1)] : dst_buckets[constructed % dst_bucket_count]; bucket_type &src_b = src_buckets[constructed]; for( siterator b(src_b.begin()), e(src_b.end()) ; b != e ; ++b){ dst_b.push_front(*detail::node_cloner (cloner, this)(b.pointed_node())); } } } } BOOST_INTRUSIVE_CATCH(...){ while(constructed--){ dst_buckets[constructed].clear_and_dispose (detail::node_disposer(disposer, this)); } BOOST_INTRUSIVE_RETHROW; } BOOST_INTRUSIVE_CATCH_END this->priv_size_traits().set_size(src.priv_size_traits().get_size()); } else{ //Unlike previous cloning algorithm, this can throw //if cloner, the hasher or comparison functor throw const_iterator b(src.begin()), e(src.end()); BOOST_INTRUSIVE_TRY{ for(; b != e; ++b){ this->insert_equal(*cloner(*b)); } } BOOST_INTRUSIVE_CATCH(...){ this->clear_and_dispose(disposer); BOOST_INTRUSIVE_RETHROW; } BOOST_INTRUSIVE_CATCH_END } } } iterator insert_equal(reference value) { size_type bucket_num, hash_value; siterator it = this->priv_find (value, this->priv_hasher(), this->priv_equal(), bucket_num, hash_value); bucket_type &b = this->priv_buckets()[bucket_num]; if(it == invalid_local_it(this->get_real_bucket_traits())){ it = b.before_begin(); } node_ptr n = node_ptr(&from_value_to_node(value)); this->priv_store_hash(n, hash_value, store_hash_t()); if(safemode_or_autounlink) BOOST_INTRUSIVE_SAFE_HOOK_DEFAULT_ASSERT(node_algorithms::unique(n)); this->priv_size_traits().increment(); return iterator(b.insert_after(it, *n), this); } template void insert_equal(Iterator b, Iterator e) { for (; b != e; ++b) this->insert_equal(*b); } //! Requires: value must be an lvalue //! //! Effects: Tries to inserts value into the unordered_set. //! //! Returns: If the value //! is not already present inserts it and returns a pair containing the //! iterator to the new value and true. If there is an equivalent value //! returns a pair containing an iterator to the already present value //! and false. //! //! Complexity: Average case O(1), worst case O(this->size()). //! //! Throws: If the internal hasher or the equality functor throws. Strong guarantee. //! //! Note: Does not affect the validity of iterators and references. //! No copy-constructors are called. std::pair insert_unique(reference value) { insert_commit_data commit_data; std::pair ret = this->insert_unique_check (value, this->priv_hasher(), this->priv_equal(), commit_data); if(!ret.second) return ret; return std::pair (this->insert_unique_commit(value, commit_data), true); } //! Requires: Dereferencing iterator must yield an lvalue //! of type value_type. //! //! Effects: Equivalent to this->insert(t) for each element in [b, e). //! //! Complexity: Average case O(N), where N is std::distance(b, e). //! Worst case O(N*this->size()). //! //! Throws: If the internal hasher or the equality functor throws. Basic guarantee. //! //! Note: Does not affect the validity of iterators and references. //! No copy-constructors are called. template void insert_unique(Iterator b, Iterator e) { for (; b != e; ++b) this->insert_unique(*b); } //! Requires: "hash_func" must be a hash function that induces //! the same hash values as the stored hasher. The difference is that //! "hash_func" hashes the given key instead of the value_type. //! //! "equal_func" must be a equality function that induces //! the same equality as key_equal. The difference is that //! "equal_func" compares an arbitrary key with the contained values. //! //! Effects: Checks if a value can be inserted in the unordered_set, using //! a user provided key instead of the value itself. //! //! Returns: If there is an equivalent value //! returns a pair containing an iterator to the already present value //! and false. If the value can be inserted returns true in the returned //! pair boolean and fills "commit_data" that is meant to be used with //! the "insert_commit" function. //! //! Complexity: Average case O(1), worst case O(this->size()). //! //! Throws: If hash_func or equal_func throw. Strong guarantee. //! //! Notes: This function is used to improve performance when constructing //! a value_type is expensive: if there is an equivalent value //! the constructed object must be discarded. Many times, the part of the //! node that is used to impose the hash or the equality is much cheaper to //! construct than the value_type and this function offers the possibility to //! use that the part to check if the insertion will be successful. //! //! If the check is successful, the user can construct the value_type and use //! "insert_commit" to insert the object in constant-time. //! //! "commit_data" remains valid for a subsequent "insert_commit" only if no more //! objects are inserted or erased from the unordered_set. //! //! After a successful rehashing insert_commit_data remains valid. template std::pair insert_unique_check ( const KeyType &key , KeyHasher hash_func , KeyValueEqual equal_func , insert_commit_data &commit_data) { size_type bucket_num; siterator prev_pos = this->priv_find(key, hash_func, equal_func, bucket_num, commit_data.hash); bool success = prev_pos == invalid_local_it(this->get_real_bucket_traits()); if(success){ prev_pos = this->priv_buckets()[bucket_num].before_begin(); } return std::pair(iterator(prev_pos, this),success); } //! Requires: value must be an lvalue of type value_type. commit_data //! must have been obtained from a previous call to "insert_check". //! No objects should have been inserted or erased from the unordered_set between //! the "insert_check" that filled "commit_data" and the call to "insert_commit". //! //! Effects: Inserts the value in the unordered_set using the information obtained //! from the "commit_data" that a previous "insert_check" filled. //! //! Returns: An iterator to the newly inserted object. //! //! Complexity: Constant time. //! //! Throws: Nothing. //! //! Notes: This function has only sense if a "insert_check" has been //! previously executed to fill "commit_data". No value should be inserted or //! erased between the "insert_check" and "insert_commit" calls. //! //! After a successful rehashing insert_commit_data remains valid. iterator insert_unique_commit(reference value, const insert_commit_data &commit_data) { size_type bucket_num = from_hash_to_bucket(commit_data.hash); bucket_type &b = this->priv_buckets()[bucket_num]; this->priv_size_traits().increment(); node_ptr n = node_ptr(&from_value_to_node(value)); this->priv_store_hash(n, commit_data.hash, store_hash_t()); if(safemode_or_autounlink) BOOST_INTRUSIVE_SAFE_HOOK_DEFAULT_ASSERT(node_algorithms::unique(n)); return iterator( b.insert_after(b.before_begin(), *n), this); } //! Effects: Erases the element pointed to by i. //! //! Complexity: Average case O(1), worst case O(this->size()). //! //! Throws: Nothing. //! //! Note: Invalidates the iterators (but not the references) //! to the erased element. No destructors are called. void erase(const_iterator i) { this->erase_and_dispose(i, detail::null_disposer()); } //! Effects: Erases the range pointed to by b end e. //! //! Complexity: Average case O(std::distance(b, e)), //! worst case O(this->size()). //! //! Throws: Nothing. //! //! Note: Invalidates the iterators (but not the references) //! to the erased elements. No destructors are called. void erase(const_iterator b, const_iterator e) { this->erase_and_dispose(b, e, detail::null_disposer()); } //! Effects: Erases all the elements with the given value. //! //! Returns: The number of erased elements. //! //! Complexity: Average case O(this->count(value)). //! Worst case O(this->size()). //! //! Throws: If the internal hasher or the equality functor throws. //! Basic guarantee. //! //! Note: Invalidates the iterators (but not the references) //! to the erased elements. No destructors are called. size_type erase(const_reference value) { return this->erase(value, this->priv_hasher(), this->priv_equal()); } //! Requires: "hash_func" must be a hash function that induces //! the same hash values as the stored hasher. The difference is that //! "hash_func" hashes the given key instead of the value_type. //! //! "equal_func" must be a equality function that induces //! the same equality as key_equal. The difference is that //! "equal_func" compares an arbitrary key with the contained values. //! //! Effects: Erases all the elements that have the same hash and //! compare equal with the given key. //! //! Returns: The number of erased elements. //! //! Complexity: Average case O(this->count(value)). //! Worst case O(this->size()). //! //! Throws: If hash_func or equal_func throw. Basic guarantee. //! //! Note: Invalidates the iterators (but not the references) //! to the erased elements. No destructors are called. template size_type erase(const KeyType& key, KeyHasher hash_func, KeyValueEqual equal_func) { return this->erase_and_dispose(key, hash_func, equal_func, detail::null_disposer()); } //! Requires: Disposer::operator()(pointer) shouldn't throw. //! //! Effects: Erases the element pointed to by i. //! Disposer::operator()(pointer) is called for the removed element. //! //! Complexity: Average case O(1), worst case O(this->size()). //! //! Throws: Nothing. //! //! Note: Invalidates the iterators //! to the erased elements. template void erase_and_dispose(const_iterator i, Disposer disposer) { siterator to_erase(i.slist_it()); bucket_ptr f(priv_buckets()), l(f + priv_buckets_len()); bucket_type &b = this->priv_buckets()[bucket_type::get_bucket_num(to_erase, *f, *l)]; b.erase_after_and_dispose (b.previous(to_erase), detail::node_disposer(disposer, this)); this->priv_size_traits().decrement(); } //! Requires: Disposer::operator()(pointer) shouldn't throw. //! //! Effects: Erases the range pointed to by b end e. //! Disposer::operator()(pointer) is called for the removed elements. //! //! Complexity: Average case O(std::distance(b, e)), //! worst case O(this->size()). //! //! Throws: Nothing. //! //! Note: Invalidates the iterators //! to the erased elements. template void erase_and_dispose(const_iterator b, const_iterator e, Disposer disposer) { if(b == e) return; //Get the bucket number and local iterator for both iterators bucket_ptr f(priv_buckets()), l(f + priv_buckets_len()); size_type first_bucket_num = bucket_type::get_bucket_num(b.slist_it(), *f, *l); siterator before_first_local_it = priv_buckets()[first_bucket_num].previous(b.slist_it()); size_type last_bucket_num; siterator last_local_it; //For the end iterator, we will assign the end iterator //of the last bucket if(e == end()){ last_bucket_num = this->bucket_count() - 1; last_local_it = priv_buckets()[last_bucket_num].end(); } else{ last_local_it = e.slist_it(); last_bucket_num = bucket_type::get_bucket_num(last_local_it, *f, *l); } const bucket_ptr buckets = priv_buckets(); //First erase the nodes of the first bucket { bucket_type &first_b = buckets[first_bucket_num]; siterator nxt(before_first_local_it); ++nxt; siterator end = first_b.end(); while(nxt != end){ nxt = first_b.erase_after_and_dispose ( before_first_local_it , detail::node_disposer(disposer, this)); this->priv_size_traits().decrement(); } } //Now fully clear the intermediate buckets for(size_type i = first_bucket_num+1; i < last_bucket_num; ++i){ bucket_type &b = buckets[i]; if(b.empty()) continue; siterator b_begin(b.before_begin()); siterator nxt(b_begin); ++nxt; siterator end = b.end(); while(nxt != end){ nxt = b.erase_after_and_dispose (b_begin, detail::node_disposer(disposer, this)); this->priv_size_traits().decrement(); } } //Now erase nodes from the last bucket { bucket_type &last_b = buckets[last_bucket_num]; siterator b_begin(last_b.before_begin()); siterator nxt(b_begin); ++nxt; while(nxt != last_local_it){ nxt = last_b.erase_after_and_dispose (b_begin, detail::node_disposer (disposer, this)); this->priv_size_traits().decrement(); } } } //! Requires: Disposer::operator()(pointer) shouldn't throw. //! //! Effects: Erases all the elements with the given value. //! Disposer::operator()(pointer) is called for the removed elements. //! //! Returns: The number of erased elements. //! //! Complexity: Average case O(this->count(value)). //! Worst case O(this->size()). //! //! Throws: If the internal hasher or the equality functor throws. //! Basic guarantee. //! //! Note: Invalidates the iterators (but not the references) //! to the erased elements. No destructors are called. template size_type erase_and_dispose(const_reference value, Disposer disposer) { return this->erase_and_dispose(value, priv_hasher(), priv_equal(), disposer); } //! Requires: Disposer::operator()(pointer) shouldn't throw. //! //! Effects: Erases all the elements with the given key. //! according to the comparison functor "equal_func". //! Disposer::operator()(pointer) is called for the removed elements. //! //! Returns: The number of erased elements. //! //! Complexity: Average case O(this->count(value)). //! Worst case O(this->size()). //! //! Throws: If hash_func or equal_func throw. Basic guarantee. //! //! Note: Invalidates the iterators //! to the erased elements. template size_type erase_and_dispose(const KeyType& key, KeyHasher hash_func ,KeyValueEqual equal_func, Disposer disposer) { size_type count(0); if(constant_time_size && this->empty()){ return 0; } bucket_type &b = this->priv_buckets()[from_hash_to_bucket(hash_func(key))]; siterator it = b.begin(); siterator prev = b.before_begin(); bool found = false; //Find equal value while(it != b.end()){ const value_type &v = *this->get_real_value_traits().to_value_ptr(it.pointed_node()); if(equal_func(key, v)){ found = true; break; } ++prev; ++it; } if(!found) return 0; //If found erase all equal values for(siterator end = b.end(); it != end && equal_func(key, *this->get_real_value_traits().to_value_ptr(it.pointed_node())) ; ++count){ it = b.erase_after_and_dispose (prev, detail::node_disposer(disposer, this)); this->priv_size_traits().decrement(); } return count; } //! Effects: Erases all of the elements. //! //! Complexity: Linear to the number of elements on the container. //! if it's a safe-mode or auto-unlink value_type. Constant time otherwise. //! //! Throws: Nothing. //! //! Note: Invalidates the iterators (but not the references) //! to the erased elements. No destructors are called. void clear() { priv_clear_buckets(); this->priv_size_traits().set_size(size_type(0)); } //! Requires: Disposer::operator()(pointer) shouldn't throw. //! //! Effects: Erases all of the elements. //! //! Complexity: Linear to the number of elements on the container. //! Disposer::operator()(pointer) is called for the removed elements. //! //! Throws: Nothing. //! //! Note: Invalidates the iterators (but not the references) //! to the erased elements. No destructors are called. template void clear_and_dispose(Disposer disposer) { if(!constant_time_size || !this->empty()){ size_type num_buckets = this->bucket_count(); bucket_ptr b = this->priv_buckets(); for(; num_buckets--; ++b){ b->clear_and_dispose (detail::node_disposer(disposer, this)); } this->priv_size_traits().set_size(size_type(0)); } } //! Effects: Returns the number of contained elements with the given value //! //! Complexity: Average case O(1), worst case O(this->size()). //! //! Throws: If the internal hasher or the equality functor throws. size_type count(const_reference value) const { return this->count(value, this->priv_hasher(), this->priv_equal()); } //! Requires: "hash_func" must be a hash function that induces //! the same hash values as the stored hasher. The difference is that //! "hash_func" hashes the given key instead of the value_type. //! //! "equal_func" must be a equality function that induces //! the same equality as key_equal. The difference is that //! "equal_func" compares an arbitrary key with the contained values. //! //! Effects: Returns the number of contained elements with the given key //! //! Complexity: Average case O(1), worst case O(this->size()). //! //! Throws: If hash_func or equal throw. template size_type count(const KeyType &key, const KeyHasher &hash_func, const KeyValueEqual &equal_func) const { size_type bucket_n1, bucket_n2, count; this->priv_equal_range(key, hash_func, equal_func, bucket_n1, bucket_n2, count); return count; } //! Effects: Finds an iterator to the first element is equal to //! "value" or end() if that element does not exist. //! //! Complexity: Average case O(1), worst case O(this->size()). //! //! Throws: If the internal hasher or the equality functor throws. iterator find(const_reference value) { return this->find(value, this->priv_hasher(), this->priv_equal()); } //! Requires: "hash_func" must be a hash function that induces //! the same hash values as the stored hasher. The difference is that //! "hash_func" hashes the given key instead of the value_type. //! //! "equal_func" must be a equality function that induces //! the same equality as key_equal. The difference is that //! "equal_func" compares an arbitrary key with the contained values. //! //! Effects: Finds an iterator to the first element whose key is //! "key" according to the given hash and equality functor or end() if //! that element does not exist. //! //! Complexity: Average case O(1), worst case O(this->size()). //! //! Throws: If hash_func or equal_func throw. //! //! Note: This function is used when constructing a value_type //! is expensive and the value_type can be compared with a cheaper //! key type. Usually this key is part of the value_type. template iterator find(const KeyType &key, KeyHasher hash_func, KeyValueEqual equal_func) { size_type bucket_n, hash; siterator local_it = this->priv_find(key, hash_func, equal_func, bucket_n, hash); return iterator(local_it, this); } //! Effects: Finds a const_iterator to the first element whose key is //! "key" or end() if that element does not exist. //! //! Complexity: Average case O(1), worst case O(this->size()). //! //! Throws: If the internal hasher or the equality functor throws. const_iterator find(const_reference value) const { return this->find(value, this->priv_hasher(), this->priv_equal()); } //! Requires: "hash_func" must be a hash function that induces //! the same hash values as the stored hasher. The difference is that //! "hash_func" hashes the given key instead of the value_type. //! //! "equal_func" must be a equality function that induces //! the same equality as key_equal. The difference is that //! "equal_func" compares an arbitrary key with the contained values. //! //! Effects: Finds an iterator to the first element whose key is //! "key" according to the given hasher and equality functor or end() if //! that element does not exist. //! //! Complexity: Average case O(1), worst case O(this->size()). //! //! Throws: If hash_func or equal_func throw. //! //! Note: This function is used when constructing a value_type //! is expensive and the value_type can be compared with a cheaper //! key type. Usually this key is part of the value_type. template const_iterator find (const KeyType &key, KeyHasher hash_func, KeyValueEqual equal_func) const { size_type bucket_n, hash_value; siterator sit = this->priv_find(key, hash_func, equal_func, bucket_n, hash_value); return const_iterator(sit, this); } //! Effects: Returns a range containing all elements with values equivalent //! to value. Returns std::make_pair(this->end(), this->end()) if no such //! elements exist. //! //! Complexity: Average case O(this->count(value)). Worst case O(this->size()). //! //! Throws: If the internal hasher or the equality functor throws. std::pair equal_range(const_reference value) { return this->equal_range(value, this->priv_hasher(), this->priv_equal()); } //! Requires: "hash_func" must be a hash function that induces //! the same hash values as the stored hasher. The difference is that //! "hash_func" hashes the given key instead of the value_type. //! //! "equal_func" must be a equality function that induces //! the same equality as key_equal. The difference is that //! "equal_func" compares an arbitrary key with the contained values. //! //! Effects: Returns a range containing all elements with equivalent //! keys. Returns std::make_pair(this->end(), this->end()) if no such //! elements exist. //! //! Complexity: Average case O(this->count(key, hash_func, equal_func)). //! Worst case O(this->size()). //! //! Throws: If hash_func or the equal_func throw. //! //! Note: This function is used when constructing a value_type //! is expensive and the value_type can be compared with a cheaper //! key type. Usually this key is part of the value_type. template std::pair equal_range (const KeyType &key, KeyHasher hash_func, KeyValueEqual equal_func) { size_type bucket_n1, bucket_n2, count; std::pair ret = this->priv_equal_range (key, hash_func, equal_func, bucket_n1, bucket_n2, count); return std::pair (iterator(ret.first, this), iterator(ret.second, this)); } //! Effects: Returns a range containing all elements with values equivalent //! to value. Returns std::make_pair(this->end(), this->end()) if no such //! elements exist. //! //! Complexity: Average case O(this->count(value)). Worst case O(this->size()). //! //! Throws: If the internal hasher or the equality functor throws. std::pair equal_range(const_reference value) const { return this->equal_range(value, this->priv_hasher(), this->priv_equal()); } //! Requires: "hash_func" must be a hash function that induces //! the same hash values as the stored hasher. The difference is that //! "hash_func" hashes the given key instead of the value_type. //! //! "equal_func" must be a equality function that induces //! the same equality as key_equal. The difference is that //! "equal_func" compares an arbitrary key with the contained values. //! //! Effects: Returns a range containing all elements with equivalent //! keys. Returns std::make_pair(this->end(), this->end()) if no such //! elements exist. //! //! Complexity: Average case O(this->count(key, hash_func, equal_func)). //! Worst case O(this->size()). //! //! Throws: If the hasher or equal_func throw. //! //! Note: This function is used when constructing a value_type //! is expensive and the value_type can be compared with a cheaper //! key type. Usually this key is part of the value_type. template std::pair equal_range (const KeyType &key, KeyHasher hash_func, KeyValueEqual equal_func) const { size_type bucket_n1, bucket_n2, count; std::pair ret = this->priv_equal_range(key, hash_func, equal_func, bucket_n1, bucket_n2, count); return std::pair (const_iterator(ret.first, this), const_iterator(ret.second, this)); } //! Requires: value must be an lvalue and shall be in a unordered_set of //! appropriate type. Otherwise the behavior is undefined. //! //! Effects: Returns: a valid iterator belonging to the unordered_set //! that points to the value //! //! Complexity: Constant. //! //! Throws: If the internal hash function throws. iterator iterator_to(reference value) { return iterator(bucket_type::s_iterator_to(from_value_to_node(value)), this); } //! Requires: value must be an lvalue and shall be in a unordered_set of //! appropriate type. Otherwise the behavior is undefined. //! //! Effects: Returns: a valid const_iterator belonging to the //! unordered_set that points to the value //! //! Complexity: Constant. //! //! Throws: If the internal hash function throws. const_iterator iterator_to(const_reference value) const { return const_iterator(bucket_type::s_iterator_to(from_value_to_node(const_cast(value))), this); } //! Requires: value must be an lvalue and shall be in a unordered_set of //! appropriate type. Otherwise the behavior is undefined. //! //! Effects: Returns: a valid local_iterator belonging to the unordered_set //! that points to the value //! //! Complexity: Constant. //! //! Throws: Nothing. //! //! Note: This static function is available only if the value traits //! is stateless. static local_iterator s_local_iterator_to(reference value) { BOOST_STATIC_ASSERT((!stateful_value_traits)); siterator sit = bucket_type::s_iterator_to(((hashtable_impl*)0)->from_value_to_node(value)); return local_iterator(sit, (hashtable_impl*)0); } //! Requires: value must be an lvalue and shall be in a unordered_set of //! appropriate type. Otherwise the behavior is undefined. //! //! Effects: Returns: a valid const_local_iterator belonging to //! the unordered_set that points to the value //! //! Complexity: Constant. //! //! Throws: Nothing. //! //! Note: This static function is available only if the value traits //! is stateless. static const_local_iterator s_local_iterator_to(const_reference value) { BOOST_STATIC_ASSERT((!stateful_value_traits)); siterator sit = bucket_type::s_iterator_to(((hashtable_impl*)0)->from_value_to_node(const_cast(value))); return const_local_iterator(sit, (hashtable_impl*)0); } //! Requires: value must be an lvalue and shall be in a unordered_set of //! appropriate type. Otherwise the behavior is undefined. //! //! Effects: Returns: a valid local_iterator belonging to the unordered_set //! that points to the value //! //! Complexity: Constant. //! //! Throws: Nothing. local_iterator local_iterator_to(reference value) { siterator sit = bucket_type::s_iterator_to(this->from_value_to_node(value)); return local_iterator(sit, this); } //! Requires: value must be an lvalue and shall be in a unordered_set of //! appropriate type. Otherwise the behavior is undefined. //! //! Effects: Returns: a valid const_local_iterator belonging to //! the unordered_set that points to the value //! //! Complexity: Constant. //! //! Throws: Nothing. const_local_iterator local_iterator_to(const_reference value) const { siterator sit = bucket_type::s_iterator_to (const_cast(this->from_value_to_node(value))); return const_local_iterator(sit, this); } //! Effects: Returns the number of buckets passed in the constructor //! or the last rehash function. //! //! Complexity: Constant. //! //! Throws: Nothing. size_type bucket_count() const { return this->priv_buckets_len(); } //! Requires: n is in the range [0, this->bucket_count()). //! //! Effects: Returns the number of elements in the nth bucket. //! //! Complexity: Constant. //! //! Throws: Nothing. size_type bucket_size(size_type n) const { return this->priv_buckets()[n].size(); } //! Effects: Returns the index of the bucket in which elements //! with keys equivalent to k would be found, if any such element existed. //! //! Complexity: Constant. //! //! Throws: If the hash functor throws. //! //! Note: the return value is in the range [0, this->bucket_count()). size_type bucket(const key_type& k) const { return this->bucket(k, this->priv_hasher()); } //! Requires: "hash_func" must be a hash function that induces //! the same hash values as the stored hasher. The difference is that //! "hash_func" hashes the given key instead of the value_type. //! //! Effects: Returns the index of the bucket in which elements //! with keys equivalent to k would be found, if any such element existed. //! //! Complexity: Constant. //! //! Throws: If hash_func throws. //! //! Note: the return value is in the range [0, this->bucket_count()). template size_type bucket(const KeyType& k, const KeyHasher &hash_func) const { return from_hash_to_bucket(hash_func(k)); } //! Effects: Returns the bucket array pointer passed in the constructor //! or the last rehash function. //! //! Complexity: Constant. //! //! Throws: Nothing. bucket_ptr bucket_pointer() const { return this->priv_buckets(); } //! Requires: n is in the range [0, this->bucket_count()). //! //! Effects: Returns a local_iterator pointing to the beginning //! of the sequence stored in the bucket n. //! //! Complexity: Constant. //! //! Throws: Nothing. //! //! Note: [this->begin(n), this->end(n)) is a valid range //! containing all of the elements in the nth bucket. local_iterator begin(size_type n) { return local_iterator(this->priv_buckets()[n].begin(), this); } //! Requires: n is in the range [0, this->bucket_count()). //! //! Effects: Returns a const_local_iterator pointing to the beginning //! of the sequence stored in the bucket n. //! //! Complexity: Constant. //! //! Throws: Nothing. //! //! Note: [this->begin(n), this->end(n)) is a valid range //! containing all of the elements in the nth bucket. const_local_iterator begin(size_type n) const { return this->cbegin(n); } //! Requires: n is in the range [0, this->bucket_count()). //! //! Effects: Returns a const_local_iterator pointing to the beginning //! of the sequence stored in the bucket n. //! //! Complexity: Constant. //! //! Throws: Nothing. //! //! Note: [this->begin(n), this->end(n)) is a valid range //! containing all of the elements in the nth bucket. const_local_iterator cbegin(size_type n) const { siterator sit = const_cast(this->priv_buckets()[n]).begin(); return const_local_iterator(sit, this); } //! Requires: n is in the range [0, this->bucket_count()). //! //! Effects: Returns a local_iterator pointing to the end //! of the sequence stored in the bucket n. //! //! Complexity: Constant. //! //! Throws: Nothing. //! //! Note: [this->begin(n), this->end(n)) is a valid range //! containing all of the elements in the nth bucket. local_iterator end(size_type n) { return local_iterator(this->priv_buckets()[n].end(), this); } //! Requires: n is in the range [0, this->bucket_count()). //! //! Effects: Returns a const_local_iterator pointing to the end //! of the sequence stored in the bucket n. //! //! Complexity: Constant. //! //! Throws: Nothing. //! //! Note: [this->begin(n), this->end(n)) is a valid range //! containing all of the elements in the nth bucket. const_local_iterator end(size_type n) const { return this->cend(n); } //! Requires: n is in the range [0, this->bucket_count()). //! //! Effects: Returns a const_local_iterator pointing to the end //! of the sequence stored in the bucket n. //! //! Complexity: Constant. //! //! Throws: Nothing. //! //! Note: [this->begin(n), this->end(n)) is a valid range //! containing all of the elements in the nth bucket. const_local_iterator cend(size_type n) const { return const_local_iterator(const_cast(this->priv_buckets()[n]).end(), this); } //! Requires: new_buckets must be a pointer to a new bucket array //! or the same as the old bucket array. new_size is the length of the //! the array pointed by new_buckets. If new_buckets == this->bucket_pointer() //! n can be bigger or smaller than this->bucket_count(). //! //! Effects: Updates the internal reference with the new bucket erases //! the values from the old bucket and inserts then in the new one. //! //! Complexity: Average case linear in this->size(), worst case quadratic. //! //! Throws: If the hasher functor throws. Basic guarantee. void rehash(const bucket_traits &new_bucket_traits) { bucket_ptr new_buckets = new_bucket_traits.bucket_begin(); size_type new_buckets_len = new_bucket_traits.bucket_count(); bucket_ptr old_buckets = this->priv_buckets(); size_type old_buckets_len = this->priv_buckets_len(); //Check power of two bucket array if the option is activated BOOST_INTRUSIVE_INVARIANT_ASSERT (!power_2_buckets || (0 == (new_buckets_len & (new_buckets_len-1u)))); BOOST_INTRUSIVE_TRY{ size_type n = 0; const bool same_buffer = old_buckets == new_buckets; //If the new bucket length is a common factor //of the old one we can avoid hash calculations. const bool fast_shrink = (old_buckets_len > new_buckets_len) && (power_2_buckets ||(old_buckets_len % new_buckets_len) == 0); //If we are shrinking the same bucket array and it's //is a fast shrink, just rehash the last nodes if(same_buffer && fast_shrink){ n = new_buckets_len; } //Iterate through nodes for(; n < old_buckets_len; ++n){ bucket_type &old_bucket = old_buckets[n]; if(!fast_shrink){ siterator before_i(old_bucket.before_begin()); siterator end(old_bucket.end()); siterator i(old_bucket.begin()); for(;i != end; ++i){ const value_type &v = *this->get_real_value_traits().to_value_ptr(i.pointed_node()); const std::size_t hash_value = this->priv_hash_when_rehashing(v, store_hash_t()); const size_type new_n = (power_2_buckets) ? (hash_value & (new_buckets_len-1)) : (hash_value % new_buckets_len); //If this is a buffer expansion don't move if it's not necessary if(same_buffer && new_n == n){ ++before_i; } else{ bucket_type &new_b = new_buckets[new_n]; new_b.splice_after(new_b.before_begin(), old_bucket, before_i); i = before_i; } } } else{ const size_type new_n = (power_2_buckets) ? (n & (new_buckets_len-1)) : (n % new_buckets_len); bucket_type &new_b = new_buckets[new_n]; new_b.splice_after(new_b.before_begin(), old_bucket); } } this->get_real_bucket_traits()= new_bucket_traits; } BOOST_INTRUSIVE_CATCH(...){ for(size_type n = 0; n < new_buckets_len; ++n){ if(safemode_or_autounlink){ new_buckets[n].clear_and_dispose (detail::init_disposer()); old_buckets[n].clear_and_dispose (detail::init_disposer()); } else{ new_buckets[n].clear(); old_buckets[n].clear(); } } this->priv_size_traits().set_size(size_type(0)); BOOST_INTRUSIVE_RETHROW; } BOOST_INTRUSIVE_CATCH_END } //! Effects: Returns the nearest new bucket count optimized for //! the container that is bigger than n. This suggestion can be used //! to create bucket arrays with a size that will usually improve //! container's performance. If such value does not exist, the //! higher possible value is returned. //! //! Complexity: Amortized constant time. //! //! Throws: Nothing. static size_type suggested_upper_bucket_count(size_type n) { const std::size_t *primes = &detail::prime_list_holder<0>::prime_list[0]; const std::size_t *primes_end = primes + detail::prime_list_holder<0>::prime_list_size; size_type const* bound = std::lower_bound(primes, primes_end, n); if(bound == primes_end) bound--; return size_type(*bound); } //! Effects: Returns the nearest new bucket count optimized for //! the container that is smaller than n. This suggestion can be used //! to create bucket arrays with a size that will usually improve //! container's performance. If such value does not exist, the //! lower possible value is returned. //! //! Complexity: Amortized constant time. //! //! Throws: Nothing. static size_type suggested_lower_bucket_count(size_type n) { const std::size_t *primes = &detail::prime_list_holder<0>::prime_list[0]; const std::size_t *primes_end = primes + detail::prime_list_holder<0>::prime_list_size; size_type const* bound = std::upper_bound(primes, primes_end, n); if(bound != primes_end) bound--; return size_type(*bound); } /// @cond private: std::size_t priv_hash_when_rehashing(const value_type &v, detail::true_) { return node_traits::get_hash(this->get_real_value_traits().to_node_ptr(v)); } std::size_t priv_hash_when_rehashing(const value_type &v, detail::false_) { return priv_hasher()(v); } void priv_store_hash(node_ptr p, std::size_t h, detail::true_) { return node_traits::set_hash(p, h); } void priv_store_hash(node_ptr, std::size_t, detail::false_) {} static siterator invalid_local_it(const real_bucket_traits &b) { return b.bucket_begin()->end(); } siterator priv_begin(size_type &bucket_num) const { size_type buckets_len = this->priv_buckets_len(); for (bucket_num = 0; bucket_num < buckets_len; ++bucket_num){ bucket_type &b = this->priv_buckets()[bucket_num]; if(!b.empty()) return b.begin(); } return invalid_local_it(this->get_real_bucket_traits()); } void priv_clear_buckets() { priv_clear_buckets(this->priv_buckets(), this->priv_buckets_len()); } static void priv_clear_buckets(bucket_ptr buckets_ptr, size_type buckets_len) { for(; buckets_len--; ++buckets_ptr){ if(safemode_or_autounlink){ buckets_ptr->clear_and_dispose(detail::init_disposer()); } else{ buckets_ptr->clear(); } } } template siterator priv_find ( const KeyType &key, KeyHasher hash_func , KeyValueEqual equal_func, size_type &bucket_number, size_type &h) const { bucket_number = from_hash_to_bucket((h = hash_func(key))); if(constant_time_size && this->empty()){ return invalid_local_it(this->get_real_bucket_traits()); } bucket_type &b = this->priv_buckets()[bucket_number]; siterator it = b.begin(); while(it != b.end()){ const value_type &v = *this->get_real_value_traits().to_value_ptr(it.pointed_node()); if(equal_func(key, v)){ return it; } ++it; } return invalid_local_it(this->get_real_bucket_traits()); } template std::pair priv_equal_range ( const KeyType &key , KeyHasher hash_func , KeyValueEqual equal_func , size_type &bucket_number_first , size_type &bucket_number_second , size_type &count) const { size_type h; count = 0; //Let's see if the element is present std::pair to_return ( priv_find(key, hash_func, equal_func, bucket_number_first, h) , invalid_local_it(this->get_real_bucket_traits())); if(to_return.first == to_return.second){ bucket_number_second = bucket_number_first; return to_return; } ++count; //If it's present, find the first that it's not equal in //the same bucket bucket_type &b = this->priv_buckets()[bucket_number_first]; siterator it = to_return.first; ++it; while(it != b.end()){ const value_type &v = *this->get_real_value_traits().to_value_ptr(it.pointed_node()); if(!equal_func(key, v)){ to_return.second = it; bucket_number_second = bucket_number_first; return to_return; } ++it; ++count; } //If we reached the end, find the first, non-empty bucket for(bucket_number_second = bucket_number_first+1 ; bucket_number_second != this->priv_buckets_len() ; ++bucket_number_second){ bucket_type &b = this->priv_buckets()[bucket_number_second]; if(!b.empty()){ to_return.second = b.begin(); return to_return; } } //Otherwise, return the end node to_return.second = invalid_local_it(this->get_real_bucket_traits()); return to_return; } /// @endcond }; /// @cond template struct make_hashtable_opt { typedef typename pack_options < uset_defaults, O1, O2, O3, O4, O5, O6, O7>::type packed_options; //Real value traits must be calculated from options typedef typename detail::get_value_traits ::type value_traits; /// @cond static const bool external_value_traits = detail::external_value_traits_is_true::value; typedef typename detail::eval_if_c < external_value_traits , detail::eval_value_traits , detail::identity >::type real_value_traits; typedef typename packed_options::bucket_traits specified_bucket_traits; /// @endcond //Real bucket traits must be calculated from options and calculated valute_traits typedef typename get_slist_impl ::type slist_impl; typedef typename detail::if_c< detail::is_same < specified_bucket_traits , default_bucket_traits >::value , detail::bucket_traits_impl , specified_bucket_traits >::type real_bucket_traits; typedef usetopt < value_traits , typename packed_options::hash , typename packed_options::equal , typename packed_options::size_type , packed_options::constant_time_size , real_bucket_traits , packed_options::power_2_buckets > type; }; /// @endcond //! Helper metafunction to define a \c hashtable that yields to the same type when the //! same options (either explicitly or implicitly) are used. #ifdef BOOST_INTRUSIVE_DOXYGEN_INVOKED template #else template #endif struct make_hashtable { /// @cond typedef hashtable_impl < typename make_hashtable_opt ::type > implementation_defined; /// @endcond typedef implementation_defined type; }; #ifndef BOOST_INTRUSIVE_DOXYGEN_INVOKED template class hashtable : public make_hashtable::type { typedef typename make_hashtable ::type Base; public: typedef typename Base::value_traits value_traits; typedef typename Base::real_value_traits real_value_traits; typedef typename Base::iterator iterator; typedef typename Base::const_iterator const_iterator; typedef typename Base::bucket_ptr bucket_ptr; typedef typename Base::size_type size_type; typedef typename Base::hasher hasher; typedef typename Base::bucket_traits bucket_traits; typedef typename Base::key_equal key_equal; //Assert if passed value traits are compatible with the type BOOST_STATIC_ASSERT((detail::is_same::value)); hashtable ( const bucket_traits &b_traits , const hasher & hash_func = hasher() , const key_equal &equal_func = key_equal() , const value_traits &v_traits = value_traits()) : Base(b_traits, hash_func, equal_func, v_traits) {} }; #endif } //namespace intrusive } //namespace boost #include #endif //BOOST_INTRUSIVE_HASHTABLE_HPP