// Copyright (c) 2006 Xiaogang Zhang // Use, modification and distribution are subject to the // Boost Software License, Version 1.0. (See accompanying file // LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt) #ifndef BOOST_MATH_BESSEL_J1_HPP #define BOOST_MATH_BESSEL_J1_HPP #include #include #include // Bessel function of the first kind of order one // x <= 8, minimax rational approximations on root-bracketing intervals // x > 8, Hankel asymptotic expansion in Hart, Computer Approximations, 1968 namespace boost { namespace math{ namespace detail{ template T bessel_j1(T x) { static const T P1[] = { static_cast(-1.4258509801366645672e+11L), static_cast(6.6781041261492395835e+09L), static_cast(-1.1548696764841276794e+08L), static_cast(9.8062904098958257677e+05L), static_cast(-4.4615792982775076130e+03L), static_cast(1.0650724020080236441e+01L), static_cast(-1.0767857011487300348e-02L) }; static const T Q1[] = { static_cast(4.1868604460820175290e+12L), static_cast(4.2091902282580133541e+10L), static_cast(2.0228375140097033958e+08L), static_cast(5.9117614494174794095e+05L), static_cast(1.0742272239517380498e+03L), static_cast(1.0L), static_cast(0.0L) }; static const T P2[] = { static_cast(-1.7527881995806511112e+16L), static_cast(1.6608531731299018674e+15L), static_cast(-3.6658018905416665164e+13L), static_cast(3.5580665670910619166e+11L), static_cast(-1.8113931269860667829e+09L), static_cast(5.0793266148011179143e+06L), static_cast(-7.5023342220781607561e+03L), static_cast(4.6179191852758252278e+00L) }; static const T Q2[] = { static_cast(1.7253905888447681194e+18L), static_cast(1.7128800897135812012e+16L), static_cast(8.4899346165481429307e+13L), static_cast(2.7622777286244082666e+11L), static_cast(6.4872502899596389593e+08L), static_cast(1.1267125065029138050e+06L), static_cast(1.3886978985861357615e+03L), static_cast(1.0L) }; static const T PC[] = { static_cast(-4.4357578167941278571e+06L), static_cast(-9.9422465050776411957e+06L), static_cast(-6.6033732483649391093e+06L), static_cast(-1.5235293511811373833e+06L), static_cast(-1.0982405543459346727e+05L), static_cast(-1.6116166443246101165e+03L), static_cast(0.0L) }; static const T QC[] = { static_cast(-4.4357578167941278568e+06L), static_cast(-9.9341243899345856590e+06L), static_cast(-6.5853394797230870728e+06L), static_cast(-1.5118095066341608816e+06L), static_cast(-1.0726385991103820119e+05L), static_cast(-1.4550094401904961825e+03L), static_cast(1.0L) }; static const T PS[] = { static_cast(3.3220913409857223519e+04L), static_cast(8.5145160675335701966e+04L), static_cast(6.6178836581270835179e+04L), static_cast(1.8494262873223866797e+04L), static_cast(1.7063754290207680021e+03L), static_cast(3.5265133846636032186e+01L), static_cast(0.0L) }; static const T QS[] = { static_cast(7.0871281941028743574e+05L), static_cast(1.8194580422439972989e+06L), static_cast(1.4194606696037208929e+06L), static_cast(4.0029443582266975117e+05L), static_cast(3.7890229745772202641e+04L), static_cast(8.6383677696049909675e+02L), static_cast(1.0L) }; static const T x1 = static_cast(3.8317059702075123156e+00L), x2 = static_cast(7.0155866698156187535e+00L), x11 = static_cast(9.810e+02L), x12 = static_cast(-3.2527979248768438556e-04L), x21 = static_cast(1.7960e+03L), x22 = static_cast(-3.8330184381246462950e-05L); T value, factor, r, rc, rs, w; BOOST_MATH_STD_USING using namespace boost::math::tools; using namespace boost::math::constants; w = abs(x); if (x == 0) { return static_cast(0); } if (w <= 4) // w in (0, 4] { T y = x * x; BOOST_ASSERT(sizeof(P1) == sizeof(Q1)); r = evaluate_rational(P1, Q1, y); factor = w * (w + x1) * ((w - x11/256) - x12); value = factor * r; } else if (w <= 8) // w in (4, 8] { T y = x * x; BOOST_ASSERT(sizeof(P2) == sizeof(Q2)); r = evaluate_rational(P2, Q2, y); factor = w * (w + x2) * ((w - x21/256) - x22); value = factor * r; } else // w in (8, \infty) { T y = 8 / w; T y2 = y * y; T z = w - 0.75f * pi(); BOOST_ASSERT(sizeof(PC) == sizeof(QC)); BOOST_ASSERT(sizeof(PS) == sizeof(QS)); rc = evaluate_rational(PC, QC, y2); rs = evaluate_rational(PS, QS, y2); factor = sqrt(2 / (w * pi())); value = factor * (rc * cos(z) - y * rs * sin(z)); } if (x < 0) { value *= -1; // odd function } return value; } }}} // namespaces #endif // BOOST_MATH_BESSEL_J1_HPP