// Copyright (c) 2006 Xiaogang Zhang // Use, modification and distribution are subject to the // Boost Software License, Version 1.0. (See accompanying file // LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt) #ifndef BOOST_MATH_BESSEL_JN_HPP #define BOOST_MATH_BESSEL_JN_HPP #include #include #include // Bessel function of the first kind of integer order // J_n(z) is the minimal solution // n < abs(z), forward recurrence stable and usable // n >= abs(z), forward recurrence unstable, use Miller's algorithm namespace boost { namespace math { namespace detail{ template T bessel_jn(int n, T x, const Policy& pol) { T value(0), factor, current, prev, next; BOOST_MATH_STD_USING if (n == 0) { return bessel_j0(x); } if (n == 1) { return bessel_j1(x); } if (n < 0) { factor = (n & 0x1) ? -1 : 1; // J_{-n}(z) = (-1)^n J_n(z) n = -n; } else { factor = 1; } if (x == 0) // n >= 2 { return static_cast(0); } if (n < abs(x)) // forward recurrence { prev = bessel_j0(x); current = bessel_j1(x); for (int k = 1; k < n; k++) { value = 2 * k * current / x - prev; prev = current; current = value; } } else // backward recurrence { T fn; int s; // fn = J_(n+1) / J_n // |x| <= n, fast convergence for continued fraction CF1 boost::math::detail::CF1_jy(static_cast(n), x, &fn, &s, pol); // tiny initial value to prevent overflow T init = sqrt(tools::min_value()); prev = fn * init; current = init; for (int k = n; k > 0; k--) { next = 2 * k * current / x - prev; prev = current; current = next; } T ratio = init / current; // scaling ratio value = bessel_j0(x) * ratio; // normalization } value *= factor; return value; } }}} // namespaces #endif // BOOST_MATH_BESSEL_JN_HPP