// math_fwd.hpp // TODO revise completely for new distribution classes. // Copyright Paul A. Bristow 2006. // Copyright John Maddock 2006. // Use, modification and distribution are subject to the // Boost Software License, Version 1.0. // (See accompanying file LICENSE_1_0.txt // or copy at http://www.boost.org/LICENSE_1_0.txt) // Omnibus list of forward declarations of math special functions. // IT = Integer type. // RT = Real type (built-in floating-point types, float, double, long double) & User Defined Types // AT = Integer or Real type #ifndef BOOST_MATH_SPECIAL_MATH_FWD_HPP #define BOOST_MATH_SPECIAL_MATH_FWD_HPP #include // for argument promotion. #include #include #include #define BOOST_NO_MACRO_EXPAND /**/ namespace boost { namespace math { // Math functions (in roughly alphabetic order). // Beta functions. template typename tools::promote_args::type beta(RT1 a, RT2 b); // Beta function (2 arguments). template typename tools::promote_args::type beta(RT1 a, RT2 b, A x); // Beta function (3 arguments). template typename tools::promote_args::type beta(RT1 a, RT2 b, RT3 x, const Policy& pol); // Beta function (3 arguments). template typename tools::promote_args::type betac(RT1 a, RT2 b, RT3 x); template typename tools::promote_args::type betac(RT1 a, RT2 b, RT3 x, const Policy& pol); template typename tools::promote_args::type ibeta(RT1 a, RT2 b, RT3 x); // Incomplete beta function. template typename tools::promote_args::type ibeta(RT1 a, RT2 b, RT3 x, const Policy& pol); // Incomplete beta function. template typename tools::promote_args::type ibetac(RT1 a, RT2 b, RT3 x); // Incomplete beta complement function. template typename tools::promote_args::type ibetac(RT1 a, RT2 b, RT3 x, const Policy& pol); // Incomplete beta complement function. template typename tools::promote_args::type ibeta_inv(T1 a, T2 b, T3 p, T4* py); template typename tools::promote_args::type ibeta_inv(T1 a, T2 b, T3 p, T4* py, const Policy& pol); template typename tools::promote_args::type ibeta_inv(RT1 a, RT2 b, RT3 p); // Incomplete beta inverse function. template typename tools::promote_args::type ibeta_inv(RT1 a, RT2 b, RT3 p, const Policy&); // Incomplete beta inverse function. template typename tools::promote_args::type ibeta_inva(RT1 a, RT2 b, RT3 p); // Incomplete beta inverse function. template typename tools::promote_args::type ibeta_inva(RT1 a, RT2 b, RT3 p, const Policy&); // Incomplete beta inverse function. template typename tools::promote_args::type ibeta_invb(RT1 a, RT2 b, RT3 p); // Incomplete beta inverse function. template typename tools::promote_args::type ibeta_invb(RT1 a, RT2 b, RT3 p, const Policy&); // Incomplete beta inverse function. template typename tools::promote_args::type ibetac_inv(T1 a, T2 b, T3 q, T4* py); template typename tools::promote_args::type ibetac_inv(T1 a, T2 b, T3 q, T4* py, const Policy& pol); template typename tools::promote_args::type ibetac_inv(RT1 a, RT2 b, RT3 q); // Incomplete beta complement inverse function. template typename tools::promote_args::type ibetac_inv(RT1 a, RT2 b, RT3 q, const Policy&); // Incomplete beta complement inverse function. template typename tools::promote_args::type ibetac_inva(RT1 a, RT2 b, RT3 q); // Incomplete beta complement inverse function. template typename tools::promote_args::type ibetac_inva(RT1 a, RT2 b, RT3 q, const Policy&); // Incomplete beta complement inverse function. template typename tools::promote_args::type ibetac_invb(RT1 a, RT2 b, RT3 q); // Incomplete beta complement inverse function. template typename tools::promote_args::type ibetac_invb(RT1 a, RT2 b, RT3 q, const Policy&); // Incomplete beta complement inverse function. template typename tools::promote_args::type ibeta_derivative(RT1 a, RT2 b, RT3 x); // derivative of incomplete beta template typename tools::promote_args::type ibeta_derivative(RT1 a, RT2 b, RT3 x, const Policy& pol); // derivative of incomplete beta // erf & erfc error functions. template // Error function. typename tools::promote_args::type erf(RT z); template // Error function. typename tools::promote_args::type erf(RT z, const Policy&); template // Error function complement. typename tools::promote_args::type erfc(RT z); template // Error function complement. typename tools::promote_args::type erfc(RT z, const Policy&); template // Error function inverse. typename tools::promote_args::type erf_inv(RT z); template // Error function inverse. typename tools::promote_args::type erf_inv(RT z, const Policy& pol); template // Error function complement inverse. typename tools::promote_args::type erfc_inv(RT z); template // Error function complement inverse. typename tools::promote_args::type erfc_inv(RT z, const Policy& pol); // Polynomials: template typename tools::promote_args::type legendre_next(unsigned l, T1 x, T2 Pl, T3 Plm1); template typename tools::promote_args::type legendre_p(int l, T x); template typename tools::promote_args::type legendre_p(int l, T x, const Policy& pol); template typename tools::promote_args::type legendre_q(unsigned l, T x); template typename tools::promote_args::type legendre_q(unsigned l, T x, const Policy& pol); template typename tools::promote_args::type legendre_next(unsigned l, unsigned m, T1 x, T2 Pl, T3 Plm1); template typename tools::promote_args::type legendre_p(int l, int m, T x); template typename tools::promote_args::type legendre_p(int l, int m, T x, const Policy& pol); template typename tools::promote_args::type laguerre_next(unsigned n, T1 x, T2 Ln, T3 Lnm1); template typename tools::promote_args::type laguerre_next(unsigned n, unsigned l, T1 x, T2 Pl, T3 Plm1); template typename tools::promote_args::type laguerre(unsigned n, T x); template typename tools::promote_args::type laguerre(unsigned n, unsigned m, T x, const Policy& pol); template struct laguerre_result { typedef typename mpl::if_< policies::is_policy, typename tools::promote_args::type, typename tools::promote_args::type >::type type; }; template typename laguerre_result::type laguerre(unsigned n, T1 m, T2 x); template typename tools::promote_args::type hermite(unsigned n, T x); template typename tools::promote_args::type hermite(unsigned n, T x, const Policy& pol); template typename tools::promote_args::type hermite_next(unsigned n, T1 x, T2 Hn, T3 Hnm1); template std::complex::type> spherical_harmonic(unsigned n, int m, T1 theta, T2 phi); template std::complex::type> spherical_harmonic(unsigned n, int m, T1 theta, T2 phi, const Policy& pol); template typename tools::promote_args::type spherical_harmonic_r(unsigned n, int m, T1 theta, T2 phi); template typename tools::promote_args::type spherical_harmonic_r(unsigned n, int m, T1 theta, T2 phi, const Policy& pol); template typename tools::promote_args::type spherical_harmonic_i(unsigned n, int m, T1 theta, T2 phi); template typename tools::promote_args::type spherical_harmonic_i(unsigned n, int m, T1 theta, T2 phi, const Policy& pol); // Elliptic integrals: template typename tools::promote_args::type ellint_rf(T1 x, T2 y, T3 z); template typename tools::promote_args::type ellint_rf(T1 x, T2 y, T3 z, const Policy& pol); template typename tools::promote_args::type ellint_rd(T1 x, T2 y, T3 z); template typename tools::promote_args::type ellint_rd(T1 x, T2 y, T3 z, const Policy& pol); template typename tools::promote_args::type ellint_rc(T1 x, T2 y); template typename tools::promote_args::type ellint_rc(T1 x, T2 y, const Policy& pol); template typename tools::promote_args::type ellint_rj(T1 x, T2 y, T3 z, T4 p); template typename tools::promote_args::type ellint_rj(T1 x, T2 y, T3 z, T4 p, const Policy& pol); template typename tools::promote_args::type ellint_2(T k); template typename tools::promote_args::type ellint_2(T1 k, T2 phi); template typename tools::promote_args::type ellint_2(T1 k, T2 phi, const Policy& pol); template typename tools::promote_args::type ellint_1(T k); template typename tools::promote_args::type ellint_1(T1 k, T2 phi); template typename tools::promote_args::type ellint_1(T1 k, T2 phi, const Policy& pol); template typename tools::promote_args::type ellint_3(T1 k, T2 v, T3 phi); template typename tools::promote_args::type ellint_3(T1 k, T2 v, T3 phi, const Policy& pol); template typename tools::promote_args::type ellint_3(T1 k, T2 v); // Factorial functions. // Note: not for integral types, at present. template struct max_factorial; template RT factorial(unsigned int); template RT factorial(unsigned int, const Policy& pol); template RT unchecked_factorial(unsigned int BOOST_MATH_APPEND_EXPLICIT_TEMPLATE_TYPE(RT)); template RT double_factorial(unsigned i); template RT double_factorial(unsigned i, const Policy& pol); template typename tools::promote_args::type falling_factorial(RT x, unsigned n); template typename tools::promote_args::type falling_factorial(RT x, unsigned n, const Policy& pol); template typename tools::promote_args::type rising_factorial(RT x, int n); template typename tools::promote_args::type rising_factorial(RT x, int n, const Policy& pol); // Gamma functions. template typename tools::promote_args::type tgamma(RT z); template typename tools::promote_args::type tgamma1pm1(RT z); template typename tools::promote_args::type tgamma1pm1(RT z, const Policy& pol); template typename tools::promote_args::type tgamma(RT1 a, RT2 z); template typename tools::promote_args::type tgamma(RT1 a, RT2 z, const Policy& pol); template typename tools::promote_args::type lgamma(RT z, int* sign); template typename tools::promote_args::type lgamma(RT z, int* sign, const Policy& pol); template typename tools::promote_args::type lgamma(RT x); template typename tools::promote_args::type lgamma(RT x, const Policy& pol); template typename tools::promote_args::type tgamma_lower(RT1 a, RT2 z); template typename tools::promote_args::type tgamma_lower(RT1 a, RT2 z, const Policy&); template typename tools::promote_args::type gamma_q(RT1 a, RT2 z); template typename tools::promote_args::type gamma_q(RT1 a, RT2 z, const Policy&); template typename tools::promote_args::type gamma_p(RT1 a, RT2 z); template typename tools::promote_args::type gamma_p(RT1 a, RT2 z, const Policy&); template typename tools::promote_args::type tgamma_delta_ratio(T1 z, T2 delta); template typename tools::promote_args::type tgamma_delta_ratio(T1 z, T2 delta, const Policy&); template typename tools::promote_args::type tgamma_ratio(T1 a, T2 b); template typename tools::promote_args::type tgamma_ratio(T1 a, T2 b, const Policy&); template typename tools::promote_args::type gamma_p_derivative(T1 a, T2 x); template typename tools::promote_args::type gamma_p_derivative(T1 a, T2 x, const Policy&); // gamma inverse. template typename tools::promote_args::type gamma_p_inv(T1 a, T2 p); template typename tools::promote_args::type gamma_p_inva(T1 a, T2 p, const Policy&); template typename tools::promote_args::type gamma_p_inva(T1 a, T2 p); template typename tools::promote_args::type gamma_p_inv(T1 a, T2 p, const Policy&); template typename tools::promote_args::type gamma_q_inv(T1 a, T2 q); template typename tools::promote_args::type gamma_q_inv(T1 a, T2 q, const Policy&); template typename tools::promote_args::type gamma_q_inva(T1 a, T2 q); template typename tools::promote_args::type gamma_q_inva(T1 a, T2 q, const Policy&); // digamma: template typename tools::promote_args::type digamma(T x); template typename tools::promote_args::type digamma(T x, const Policy&); // Hypotenuse function sqrt(x ^ 2 + y ^ 2). template typename tools::promote_args::type hypot(T1 x, T2 y); template typename tools::promote_args::type hypot(T1 x, T2 y, const Policy&); // cbrt - cube root. template typename tools::promote_args::type cbrt(RT z); template typename tools::promote_args::type cbrt(RT z, const Policy&); // log1p is log(x + 1) template typename tools::promote_args::type log1p(T); template typename tools::promote_args::type log1p(T, const Policy&); // log1pmx is log(x + 1) - x template typename tools::promote_args::type log1pmx(T); template typename tools::promote_args::type log1pmx(T, const Policy&); // Exp (x) minus 1 functions. template typename tools::promote_args::type expm1(T); template typename tools::promote_args::type expm1(T, const Policy&); // Power - 1 template typename tools::promote_args::type powm1(const T1 a, const T2 z); template typename tools::promote_args::type powm1(const T1 a, const T2 z, const Policy&); // sqrt(1+x) - 1 template typename tools::promote_args::type sqrt1pm1(const T& val); template typename tools::promote_args::type sqrt1pm1(const T& val, const Policy&); // sinus cardinals: template typename tools::promote_args::type sinc_pi(T x); template typename tools::promote_args::type sinc_pi(T x, const Policy&); template typename tools::promote_args::type sinhc_pi(T x); template typename tools::promote_args::type sinhc_pi(T x, const Policy&); // inverse hyperbolics: template typename tools::promote_args::type asinh(const T x); template typename tools::promote_args::type asinh(const T x, const Policy&); template typename tools::promote_args::type acosh(const T x); template typename tools::promote_args::type acosh(const T x, const Policy&); template typename tools::promote_args::type atanh(const T x); template typename tools::promote_args::type atanh(const T x, const Policy&); namespace detail{ typedef mpl::int_<0> bessel_no_int_tag; // No integer optimisation possible. typedef mpl::int_<1> bessel_maybe_int_tag; // Maybe integer optimisation. typedef mpl::int_<2> bessel_int_tag; // Definite integer optimistaion. template struct bessel_traits { typedef typename tools::promote_args< T1, T2 >::type result_type; typedef typename policies::precision::type precision_type; typedef typename mpl::if_< mpl::or_< mpl::less_equal >, mpl::greater > >, bessel_no_int_tag, typename mpl::if_< is_integral, bessel_int_tag, bessel_maybe_int_tag >::type >::type optimisation_tag; }; } // detail // Bessel functions: template typename detail::bessel_traits::result_type cyl_bessel_j(T1 v, T2 x, const Policy& pol); template typename detail::bessel_traits >::result_type cyl_bessel_j(T1 v, T2 x); template typename detail::bessel_traits::result_type sph_bessel(unsigned v, T x, const Policy& pol); template typename detail::bessel_traits >::result_type sph_bessel(unsigned v, T x); template typename detail::bessel_traits::result_type cyl_bessel_i(T1 v, T2 x, const Policy& pol); template typename detail::bessel_traits >::result_type cyl_bessel_i(T1 v, T2 x); template typename detail::bessel_traits::result_type cyl_bessel_k(T1 v, T2 x, const Policy& pol); template typename detail::bessel_traits >::result_type cyl_bessel_k(T1 v, T2 x); template typename detail::bessel_traits::result_type cyl_neumann(T1 v, T2 x, const Policy& pol); template typename detail::bessel_traits >::result_type cyl_neumann(T1 v, T2 x); template typename detail::bessel_traits::result_type sph_neumann(unsigned v, T x, const Policy& pol); template typename detail::bessel_traits >::result_type sph_neumann(unsigned v, T x); template typename tools::promote_args::type sin_pi(T x, const Policy&); template typename tools::promote_args::type sin_pi(T x); template typename tools::promote_args::type cos_pi(T x, const Policy&); template typename tools::promote_args::type cos_pi(T x); template int fpclassify BOOST_NO_MACRO_EXPAND(T t); template bool isfinite BOOST_NO_MACRO_EXPAND(T z); template bool isinf BOOST_NO_MACRO_EXPAND(T t); template bool isnan BOOST_NO_MACRO_EXPAND(T t); template bool isnormal BOOST_NO_MACRO_EXPAND(T t); } // namespace math } // namespace boost #define BOOST_MATH_DECLARE_SPECIAL_FUNCTIONS(Policy)\ template \ inline typename boost::math::tools::promote_args::type \ beta(RT1 a, RT2 b) { return ::boost::math::beta(a, b, Policy()); }\ \ template \ inline typename boost::math::tools::promote_args::type \ beta(RT1 a, RT2 b, A x){ return ::boost::math::beta(a, b, x, Policy()); }\ \ template \ inline typename boost::math::tools::promote_args::type \ betac(RT1 a, RT2 b, RT3 x) { return ::boost::math::betac(a, b, x, Policy()); }\ \ template \ inline typename boost::math::tools::promote_args::type \ ibeta(RT1 a, RT2 b, RT3 x){ return ::boost::math::ibeta(a, b, x, Policy()); }\ \ template \ inline typename boost::math::tools::promote_args::type \ ibetac(RT1 a, RT2 b, RT3 x){ return ::boost::math::ibetac(a, b, x, Policy()); }\ \ template \ inline typename boost::math::tools::promote_args::type \ ibeta_inv(T1 a, T2 b, T3 p, T4* py){ return ::boost::math::ibeta_inv(a, b, p, py, Policy()); }\ \ template \ inline typename boost::math::tools::promote_args::type \ ibeta_inv(RT1 a, RT2 b, RT3 p){ return ::boost::math::ibeta_inv(a, b, p, Policy()); }\ \ template \ inline typename boost::math::tools::promote_args::type \ ibetac_inv(T1 a, T2 b, T3 q, T4* py){ return ::boost::math::ibetac_inv(a, b, q, py, Policy()); }\ \ template \ inline typename boost::math::tools::promote_args::type \ ibeta_inva(RT1 a, RT2 b, RT3 p){ return ::boost::math::ibeta_inva(a, b, p, Policy()); }\ \ template \ inline typename boost::math::tools::promote_args::type \ ibetac_inva(T1 a, T2 b, T3 q){ return ::boost::math::ibetac_inva(a, b, q, Policy()); }\ \ template \ inline typename boost::math::tools::promote_args::type \ ibeta_invb(RT1 a, RT2 b, RT3 p){ return ::boost::math::ibeta_invb(a, b, p, Policy()); }\ \ template \ inline typename boost::math::tools::promote_args::type \ ibetac_invb(T1 a, T2 b, T3 q){ return ::boost::math::ibetac_invb(a, b, q, Policy()); }\ \ template \ inline typename boost::math::tools::promote_args::type \ ibetac_inv(RT1 a, RT2 b, RT3 q){ return ::boost::math::ibetac_inv(a, b, q, Policy()); }\ \ template \ inline typename boost::math::tools::promote_args::type \ ibeta_derivative(RT1 a, RT2 b, RT3 x){ return ::boost::math::ibeta_derivative(a, b, x, Policy()); }\ \ template \ inline typename boost::math::tools::promote_args::type erf(RT z) { return ::boost::math::erf(z, Policy()); }\ \ template \ inline typename boost::math::tools::promote_args::type erfc(RT z){ return ::boost::math::erfc(z, Policy()); }\ \ template \ inline typename boost::math::tools::promote_args::type erf_inv(RT z) { return ::boost::math::erf_inv(z, Policy()); }\ \ template \ inline typename boost::math::tools::promote_args::type erfc_inv(RT z){ return ::boost::math::erfc_inv(z, Policy()); }\ \ using boost::math::legendre_next;\ \ template \ inline typename boost::math::tools::promote_args::type \ legendre_p(int l, T x){ return ::boost::math::legendre_p(l, x, Policy()); }\ \ template \ inline typename boost::math::tools::promote_args::type \ legendre_q(unsigned l, T x){ return ::boost::math::legendre_q(l, x, Policy()); }\ \ using ::boost::math::legendre_next;\ \ template \ inline typename boost::math::tools::promote_args::type \ legendre_p(int l, int m, T x){ return ::boost::math::legendre_p(l, m, x, Policy()); }\ \ using ::boost::math::laguerre_next;\ \ template \ inline typename boost::math::tools::promote_args::type \ laguerre(unsigned n, T x){ return ::boost::math::laguerre(n, x, Policy()); }\ \ template \ inline typename boost::math::laguerre_result::type \ laguerre(unsigned n, T1 m, T2 x) { return ::boost::math::laguerre(n, m, x, Policy()); }\ \ template \ inline typename boost::math::tools::promote_args::type \ hermite(unsigned n, T x){ return ::boost::math::hermite(n, x, Policy()); }\ \ using boost::math::hermite_next;\ \ template \ inline std::complex::type> \ spherical_harmonic(unsigned n, int m, T1 theta, T2 phi){ return boost::math::spherical_harmonic(n, m, theta, phi, Policy()); }\ \ template \ inline typename boost::math::tools::promote_args::type \ spherical_harmonic_r(unsigned n, int m, T1 theta, T2 phi){ return ::boost::math::spherical_harmonic_r(n, m, theta, phi, Policy()); }\ \ template \ inline typename boost::math::tools::promote_args::type \ spherical_harmonic_i(unsigned n, int m, T1 theta, T2 phi){ return boost::math::spherical_harmonic_i(n, m, theta, phi, Policy()); }\ \ template \ inline typename boost::math::tools::promote_args::type \ spherical_harmonic_i(unsigned n, int m, T1 theta, T2 phi, const Policy& pol);\ \ template \ inline typename boost::math::tools::promote_args::type \ ellint_rf(T1 x, T2 y, T3 z){ return ::boost::math::ellint_rf(x, y, z, Policy()); }\ \ template \ inline typename boost::math::tools::promote_args::type \ ellint_rd(T1 x, T2 y, T3 z){ return ::boost::math::ellint_rd(x, y, z, Policy()); }\ \ template \ inline typename boost::math::tools::promote_args::type \ ellint_rc(T1 x, T2 y){ return ::boost::math::ellint_rc(x, y, Policy()); }\ \ template \ inline typename boost::math::tools::promote_args::type \ ellint_rj(T1 x, T2 y, T3 z, T4 p){ return boost::math::ellint_rj(x, y, z, p, Policy()); }\ \ template \ inline typename boost::math::tools::promote_args::type ellint_2(T k){ return boost::math::ellint_2(k, Policy()); }\ \ template \ inline typename boost::math::tools::promote_args::type ellint_2(T1 k, T2 phi){ return boost::math::ellint_2(k, phi, Policy()); }\ \ template \ inline typename boost::math::tools::promote_args::type ellint_1(T k){ return boost::math::ellint_1(k, Policy()); }\ \ template \ inline typename boost::math::tools::promote_args::type ellint_1(T1 k, T2 phi){ return boost::math::ellint_1(k, phi, Policy()); }\ \ template \ inline typename boost::math::tools::promote_args::type ellint_3(T1 k, T2 v, T3 phi){ return boost::math::ellint_3(k, v, phi, Policy()); }\ \ template \ inline typename boost::math::tools::promote_args::type ellint_3(T1 k, T2 v){ return boost::math::ellint_3(k, v, Policy()); }\ \ using boost::math::max_factorial;\ template \ inline RT factorial(unsigned int i) { return boost::math::factorial(i, Policy()); }\ using boost::math::unchecked_factorial;\ template \ inline RT double_factorial(unsigned i){ return boost::math::double_factorial(i, Policy()); }\ template \ inline typename boost::math::tools::promote_args::type falling_factorial(RT x, unsigned n){ return boost::math::falling_factorial(x, n, Policy()); }\ template \ inline typename boost::math::tools::promote_args::type rising_factorial(RT x, unsigned n){ return boost::math::rising_factorial(x, n, Policy()); }\ using boost::math::fpclassify;\ \ template \ inline typename boost::math::tools::promote_args::type tgamma(RT z){ return boost::math::tgamma(z, Policy()); }\ \ template \ inline typename boost::math::tools::promote_args::type tgamma1pm1(RT z){ return boost::math::tgamma1pm1(z, Policy()); }\ \ template \ inline typename boost::math::tools::promote_args::type tgamma(RT1 a, RT2 z){ return boost::math::tgamma(a, z, Policy()); }\ \ template \ inline typename boost::math::tools::promote_args::type lgamma(RT z, int* sign){ return boost::math::lgamma(z, sign, Policy()); }\ \ template \ inline typename boost::math::tools::promote_args::type lgamma(RT x){ return boost::math::lgamma(x, Policy()); }\ \ template \ inline typename boost::math::tools::promote_args::type tgamma_lower(RT1 a, RT2 z){ return boost::math::tgamma_lower(a, z, Policy()); }\ \ template \ inline typename boost::math::tools::promote_args::type gamma_q(RT1 a, RT2 z){ return boost::math::gamma_q(a, z, Policy()); }\ \ template \ inline typename boost::math::tools::promote_args::type gamma_p(RT1 a, RT2 z){ return boost::math::gamma_p(a, z, Policy()); }\ \ template \ inline typename boost::math::tools::promote_args::type tgamma_delta_ratio(T1 z, T2 delta){ return boost::math::tgamma_delta_ratio(z, delta, Policy()); }\ \ template \ inline typename boost::math::tools::promote_args::type tgamma_ratio(T1 a, T2 b) { return boost::math::tgamma_ratio(a, b, Policy()); }\ \ template \ inline typename boost::math::tools::promote_args::type gamma_p_derivative(T1 a, T2 x){ return boost::math::gamma_p_derivative(a, x, Policy()); }\ \ template \ inline typename boost::math::tools::promote_args::type gamma_p_inv(T1 a, T2 p){ return boost::math::gamma_p_inv(a, p, Policy()); }\ \ template \ inline typename boost::math::tools::promote_args::type gamma_p_inva(T1 a, T2 p){ return boost::math::gamma_p_inva(a, p, Policy()); }\ \ template \ inline typename boost::math::tools::promote_args::type gamma_q_inv(T1 a, T2 q){ return boost::math::gamma_q_inv(a, q, Policy()); }\ \ template \ inline typename boost::math::tools::promote_args::type gamma_q_inva(T1 a, T2 q){ return boost::math::gamma_q_inva(a, q, Policy()); }\ \ template \ inline typename boost::math::tools::promote_args::type digamma(T x){ return boost::math::digamma(x, Policy()); }\ \ template \ inline typename boost::math::tools::promote_args::type \ hypot(T1 x, T2 y){ return boost::math::hypot(x, y, Policy()); }\ \ template \ inline typename boost::math::tools::promote_args::type cbrt(RT z){ return boost::math::cbrt(z, Policy()); }\ \ template \ inline typename boost::math::tools::promote_args::type log1p(T x){ return boost::math::log1p(x, Policy()); }\ \ template \ inline typename boost::math::tools::promote_args::type log1pmx(T x){ return boost::math::log1pmx(x, Policy()); }\ \ template \ inline typename boost::math::tools::promote_args::type expm1(T x){ return boost::math::expm1(x, Policy()); }\ \ template \ inline typename boost::math::tools::promote_args::type \ powm1(const T1 a, const T2 z){ return boost::math::powm1(a, z, Policy()); }\ \ template \ inline typename boost::math::tools::promote_args::type sqrt1pm1(const T& val){ return boost::math::sqrt1pm1(val, Policy()); }\ \ template \ inline typename boost::math::tools::promote_args::type sinc_pi(T x){ return boost::math::sinc_pi(x, Policy()); }\ \ template \ inline typename boost::math::tools::promote_args::type sinhc_pi(T x){ return boost::math::sinhc_pi(x, Policy()); }\ \ template\ inline typename boost::math::tools::promote_args::type asinh(const T x){ return boost::math::asinh(x, Policy()); }\ \ template\ inline typename boost::math::tools::promote_args::type acosh(const T x){ return boost::math::acosh(x, Policy()); }\ \ template\ inline typename boost::math::tools::promote_args::type atanh(const T x){ return boost::math::atanh(x, Policy()); }\ \ template \ inline typename boost::math::detail::bessel_traits::result_type cyl_bessel_j(T1 v, T2 x)\ { return boost::math::cyl_bessel_j(v, x, Policy()); }\ \ template \ inline typename boost::math::detail::bessel_traits::result_type sph_bessel(unsigned v, T x)\ { return boost::math::sph_bessel(v, x, Policy()); }\ \ template \ inline typename boost::math::detail::bessel_traits::result_type \ cyl_bessel_i(T1 v, T2 x) { return boost::math::cyl_bessel_i(v, x, Policy()); }\ \ template \ inline typename boost::math::detail::bessel_traits::result_type \ cyl_bessel_k(T1 v, T2 x) { return boost::math::cyl_bessel_k(v, x, Policy()); }\ \ template \ inline typename boost::math::detail::bessel_traits::result_type \ cyl_neumann(T1 v, T2 x){ return boost::math::cyl_neumann(v, x, Policy()); }\ \ template \ inline typename boost::math::detail::bessel_traits::result_type \ sph_neumann(unsigned v, T x){ return boost::math::sph_neumann(v, x, Policy()); }\ \ template \ inline typename boost::math::tools::promote_args::type sin_pi(T x){ return boost::math::sin_pi(x); }\ \ template \ inline typename boost::math::tools::promote_args::type cos_pi(T x){ return boost::math::cos_pi(x); }\ \ using boost::math::fpclassify;\ using boost::math::isfinite;\ using boost::math::isinf;\ using boost::math::isnan;\ using boost::math::isnormal; #endif // BOOST_MATH_SPECIAL_MATH_FWD_HPP