// boost sinc.hpp header file // (C) Copyright Hubert Holin 2001. // Distributed under the Boost Software License, Version 1.0. (See // accompanying file LICENSE_1_0.txt or copy at // http://www.boost.org/LICENSE_1_0.txt) // See http://www.boost.org for updates, documentation, and revision history. #ifndef BOOST_SINC_HPP #define BOOST_SINC_HPP #include #include #include #include #include #include #include #include #include // These are the the "Sinus Cardinal" functions. namespace boost { namespace math { namespace detail { #if defined(__GNUC__) && (__GNUC__ < 3) // gcc 2.x ignores function scope using declarations, // put them in the scope of the enclosing namespace instead: using ::std::abs; using ::std::sqrt; using ::std::sin; using ::std::numeric_limits; #endif /* defined(__GNUC__) && (__GNUC__ < 3) */ // This is the "Sinus Cardinal" of index Pi. template inline T sinc_pi_imp(const T x) { #if defined(BOOST_NO_STDC_NAMESPACE) && !defined(__SUNPRO_CC) using ::abs; using ::sin; using ::sqrt; #else /* BOOST_NO_STDC_NAMESPACE */ using ::std::abs; using ::std::sin; using ::std::sqrt; #endif /* BOOST_NO_STDC_NAMESPACE */ // Note: this code is *not* thread safe! static T const taylor_0_bound = tools::epsilon(); static T const taylor_2_bound = sqrt(taylor_0_bound); static T const taylor_n_bound = sqrt(taylor_2_bound); if (abs(x) >= taylor_n_bound) { return(sin(x)/x); } else { // approximation by taylor series in x at 0 up to order 0 T result = static_cast(1); if (abs(x) >= taylor_0_bound) { T x2 = x*x; // approximation by taylor series in x at 0 up to order 2 result -= x2/static_cast(6); if (abs(x) >= taylor_2_bound) { // approximation by taylor series in x at 0 up to order 4 result += (x2*x2)/static_cast(120); } } return(result); } } } // namespace detail template inline typename tools::promote_args::type sinc_pi(T x) { typedef typename tools::promote_args::type result_type; return detail::sinc_pi_imp(static_cast(x)); } template inline typename tools::promote_args::type sinc_pi(T x, const Policy&) { typedef typename tools::promote_args::type result_type; return detail::sinc_pi_imp(static_cast(x)); } #ifdef BOOST_NO_TEMPLATE_TEMPLATES #else /* BOOST_NO_TEMPLATE_TEMPLATES */ template class U> inline U sinc_pi(const U x) { #if defined(BOOST_FUNCTION_SCOPE_USING_DECLARATION_BREAKS_ADL) || defined(__GNUC__) using namespace std; #elif defined(BOOST_NO_STDC_NAMESPACE) using ::abs; using ::sin; using ::sqrt; #else /* BOOST_NO_STDC_NAMESPACE */ using ::std::abs; using ::std::sin; using ::std::sqrt; #endif /* BOOST_NO_STDC_NAMESPACE */ using ::std::numeric_limits; static T const taylor_0_bound = tools::epsilon(); static T const taylor_2_bound = sqrt(taylor_0_bound); static T const taylor_n_bound = sqrt(taylor_2_bound); if (abs(x) >= taylor_n_bound) { return(sin(x)/x); } else { // approximation by taylor series in x at 0 up to order 0 #ifdef __MWERKS__ U result = static_cast >(1); #else U result = U(1); #endif if (abs(x) >= taylor_0_bound) { U x2 = x*x; // approximation by taylor series in x at 0 up to order 2 result -= x2/static_cast(6); if (abs(x) >= taylor_2_bound) { // approximation by taylor series in x at 0 up to order 4 result += (x2*x2)/static_cast(120); } } return(result); } } template class U, class Policy> inline U sinc_pi(const U x, const Policy&) { return sinc_pi(x); } #endif /* BOOST_NO_TEMPLATE_TEMPLATES */ } } #endif /* BOOST_SINC_HPP */