// // Copyright (c) 2000-2002 // Joerg Walter, Mathias Koch // // Distributed under the Boost Software License, Version 1.0. (See // accompanying file LICENSE_1_0.txt or copy at // http://www.boost.org/LICENSE_1_0.txt) // // The authors gratefully acknowledge the support of // GeNeSys mbH & Co. KG in producing this work. // #ifndef _BOOST_UBLAS_FUNCTIONAL_ #define _BOOST_UBLAS_FUNCTIONAL_ #include #include #ifdef BOOST_UBLAS_USE_DUFF_DEVICE #include #endif #ifdef BOOST_UBLAS_USE_SIMD #include #else namespace boost { namespace numeric { namespace ublas { namespace raw { }}}} #endif #ifdef BOOST_UBLAS_HAVE_BINDINGS #include #include #include #include #endif #include namespace boost { namespace numeric { namespace ublas { // Scalar functors // Unary template struct scalar_unary_functor { typedef T value_type; typedef typename type_traits::const_reference argument_type; typedef typename type_traits::value_type result_type; }; template struct scalar_identity: public scalar_unary_functor { typedef typename scalar_unary_functor::argument_type argument_type; typedef typename scalar_unary_functor::result_type result_type; static BOOST_UBLAS_INLINE result_type apply (argument_type t) { return t; } }; template struct scalar_negate: public scalar_unary_functor { typedef typename scalar_unary_functor::argument_type argument_type; typedef typename scalar_unary_functor::result_type result_type; static BOOST_UBLAS_INLINE result_type apply (argument_type t) { return - t; } }; template struct scalar_conj: public scalar_unary_functor { typedef typename scalar_unary_functor::value_type value_type; typedef typename scalar_unary_functor::argument_type argument_type; typedef typename scalar_unary_functor::result_type result_type; static BOOST_UBLAS_INLINE result_type apply (argument_type t) { return type_traits::conj (t); } }; // Unary returning real template struct scalar_real_unary_functor { typedef T value_type; typedef typename type_traits::const_reference argument_type; typedef typename type_traits::real_type result_type; }; template struct scalar_real: public scalar_real_unary_functor { typedef typename scalar_real_unary_functor::value_type value_type; typedef typename scalar_real_unary_functor::argument_type argument_type; typedef typename scalar_real_unary_functor::result_type result_type; static BOOST_UBLAS_INLINE result_type apply (argument_type t) { return type_traits::real (t); } }; template struct scalar_imag: public scalar_real_unary_functor { typedef typename scalar_real_unary_functor::value_type value_type; typedef typename scalar_real_unary_functor::argument_type argument_type; typedef typename scalar_real_unary_functor::result_type result_type; static BOOST_UBLAS_INLINE result_type apply (argument_type t) { return type_traits::imag (t); } }; // Binary template struct scalar_binary_functor { typedef typename type_traits::const_reference argument1_type; typedef typename type_traits::const_reference argument2_type; typedef typename promote_traits::promote_type result_type; }; template struct scalar_plus: public scalar_binary_functor { typedef typename scalar_binary_functor::argument1_type argument1_type; typedef typename scalar_binary_functor::argument2_type argument2_type; typedef typename scalar_binary_functor::result_type result_type; static BOOST_UBLAS_INLINE result_type apply (argument1_type t1, argument2_type t2) { return t1 + t2; } }; template struct scalar_minus: public scalar_binary_functor { typedef typename scalar_binary_functor::argument1_type argument1_type; typedef typename scalar_binary_functor::argument2_type argument2_type; typedef typename scalar_binary_functor::result_type result_type; static BOOST_UBLAS_INLINE result_type apply (argument1_type t1, argument2_type t2) { return t1 - t2; } }; template struct scalar_multiplies: public scalar_binary_functor { typedef typename scalar_binary_functor::argument1_type argument1_type; typedef typename scalar_binary_functor::argument2_type argument2_type; typedef typename scalar_binary_functor::result_type result_type; static BOOST_UBLAS_INLINE result_type apply (argument1_type t1, argument2_type t2) { return t1 * t2; } }; template struct scalar_divides: public scalar_binary_functor { typedef typename scalar_binary_functor::argument1_type argument1_type; typedef typename scalar_binary_functor::argument2_type argument2_type; typedef typename scalar_binary_functor::result_type result_type; static BOOST_UBLAS_INLINE result_type apply (argument1_type t1, argument2_type t2) { return t1 / t2; } }; template struct scalar_binary_assign_functor { // ISSUE Remove reference to avoid reference to reference problems typedef typename type_traits::type>::reference argument1_type; typedef typename type_traits::const_reference argument2_type; }; struct assign_tag {}; struct computed_assign_tag {}; template struct scalar_assign: public scalar_binary_assign_functor { typedef typename scalar_binary_assign_functor::argument1_type argument1_type; typedef typename scalar_binary_assign_functor::argument2_type argument2_type; #if BOOST_WORKAROUND( __IBMCPP__, <=600 ) static const bool computed ; #else static const bool computed = false ; #endif static BOOST_UBLAS_INLINE void apply (argument1_type t1, argument2_type t2) { t1 = t2; } template struct rebind { typedef scalar_assign other; }; }; #if BOOST_WORKAROUND( __IBMCPP__, <=600 ) template const bool scalar_assign::computed = false; #endif template struct scalar_plus_assign: public scalar_binary_assign_functor { typedef typename scalar_binary_assign_functor::argument1_type argument1_type; typedef typename scalar_binary_assign_functor::argument2_type argument2_type; #if BOOST_WORKAROUND( __IBMCPP__, <=600 ) static const bool computed ; #else static const bool computed = true ; #endif static BOOST_UBLAS_INLINE void apply (argument1_type t1, argument2_type t2) { t1 += t2; } template struct rebind { typedef scalar_plus_assign other; }; }; #if BOOST_WORKAROUND( __IBMCPP__, <=600 ) template const bool scalar_plus_assign::computed = true; #endif template struct scalar_minus_assign: public scalar_binary_assign_functor { typedef typename scalar_binary_assign_functor::argument1_type argument1_type; typedef typename scalar_binary_assign_functor::argument2_type argument2_type; #if BOOST_WORKAROUND( __IBMCPP__, <=600 ) static const bool computed ; #else static const bool computed = true ; #endif static BOOST_UBLAS_INLINE void apply (argument1_type t1, argument2_type t2) { t1 -= t2; } template struct rebind { typedef scalar_minus_assign other; }; }; #if BOOST_WORKAROUND( __IBMCPP__, <=600 ) template const bool scalar_minus_assign::computed = true; #endif template struct scalar_multiplies_assign: public scalar_binary_assign_functor { typedef typename scalar_binary_assign_functor::argument1_type argument1_type; typedef typename scalar_binary_assign_functor::argument2_type argument2_type; static const bool computed = true; static BOOST_UBLAS_INLINE void apply (argument1_type t1, argument2_type t2) { t1 *= t2; } template struct rebind { typedef scalar_multiplies_assign other; }; }; template struct scalar_divides_assign: public scalar_binary_assign_functor { typedef typename scalar_binary_assign_functor::argument1_type argument1_type; typedef typename scalar_binary_assign_functor::argument2_type argument2_type; static const bool computed ; static BOOST_UBLAS_INLINE void apply (argument1_type t1, argument2_type t2) { t1 /= t2; } template struct rebind { typedef scalar_divides_assign other; }; }; template const bool scalar_divides_assign::computed = true; template struct scalar_binary_swap_functor { typedef typename type_traits::type>::reference argument1_type; typedef typename type_traits::type>::reference argument2_type; }; template struct scalar_swap: public scalar_binary_swap_functor { typedef typename scalar_binary_swap_functor::argument1_type argument1_type; typedef typename scalar_binary_swap_functor::argument2_type argument2_type; static BOOST_UBLAS_INLINE void apply (argument1_type t1, argument2_type t2) { std::swap (t1, t2); } template struct rebind { typedef scalar_swap other; }; }; // Vector functors // Unary returning scalar template struct vector_scalar_unary_functor { typedef typename V::value_type value_type; typedef typename V::value_type result_type; }; template struct vector_sum: public vector_scalar_unary_functor { typedef typename vector_scalar_unary_functor::value_type value_type; typedef typename vector_scalar_unary_functor::result_type result_type; template static BOOST_UBLAS_INLINE result_type apply (const vector_expression &e) { result_type t = result_type (0); typedef typename E::size_type vector_size_type; vector_size_type size (e ().size ()); for (vector_size_type i = 0; i < size; ++ i) t += e () (i); return t; } // Dense case template static BOOST_UBLAS_INLINE result_type apply (D size, I it) { result_type t = result_type (0); while (-- size >= 0) t += *it, ++ it; return t; } // Sparse case template static BOOST_UBLAS_INLINE result_type apply (I it, const I &it_end) { result_type t = result_type (0); while (it != it_end) t += *it, ++ it; return t; } }; // Unary returning real scalar template struct vector_scalar_real_unary_functor { typedef typename V::value_type value_type; typedef typename type_traits::real_type real_type; typedef real_type result_type; }; template struct vector_norm_1: public vector_scalar_real_unary_functor { typedef typename vector_scalar_real_unary_functor::value_type value_type; typedef typename vector_scalar_real_unary_functor::real_type real_type; typedef typename vector_scalar_real_unary_functor::result_type result_type; template static BOOST_UBLAS_INLINE result_type apply (const vector_expression &e) { real_type t = real_type (); typedef typename E::size_type vector_size_type; vector_size_type size (e ().size ()); for (vector_size_type i = 0; i < size; ++ i) { real_type u (type_traits::type_abs (e () (i))); t += u; } return t; } // Dense case template static BOOST_UBLAS_INLINE result_type apply (D size, I it) { real_type t = real_type (); while (-- size >= 0) { real_type u (type_traits::norm_1 (*it)); t += u; ++ it; } return t; } // Sparse case template static BOOST_UBLAS_INLINE result_type apply (I it, const I &it_end) { real_type t = real_type (); while (it != it_end) { real_type u (type_traits::norm_1 (*it)); t += u; ++ it; } return t; } }; template struct vector_norm_2: public vector_scalar_real_unary_functor { typedef typename vector_scalar_real_unary_functor::value_type value_type; typedef typename vector_scalar_real_unary_functor::real_type real_type; typedef typename vector_scalar_real_unary_functor::result_type result_type; template static BOOST_UBLAS_INLINE result_type apply (const vector_expression &e) { #ifndef BOOST_UBLAS_SCALED_NORM real_type t = real_type (); typedef typename E::size_type vector_size_type; vector_size_type size (e ().size ()); for (vector_size_type i = 0; i < size; ++ i) { real_type u (type_traits::norm_2 (e () (i))); t += u * u; } return type_traits::type_sqrt (t); #else real_type scale = real_type (); real_type sum_squares (1); size_type size (e ().size ()); for (size_type i = 0; i < size; ++ i) { real_type u (type_traits::norm_2 (e () (i))); if (scale < u) { real_type v (scale / u); sum_squares = sum_squares * v * v + real_type (1); scale = u; } else { real_type v (u / scale); sum_squares += v * v; } } return scale * type_traits::type_sqrt (sum_squares); #endif } // Dense case template static BOOST_UBLAS_INLINE result_type apply (D size, I it) { #ifndef BOOST_UBLAS_SCALED_NORM real_type t = real_type (); while (-- size >= 0) { real_type u (type_traits::norm_2 (*it)); t += u * u; ++ it; } return type_traits::type_sqrt (t); #else real_type scale = real_type (); real_type sum_squares (1); while (-- size >= 0) { real_type u (type_traits::norm_2 (*it)); if (scale < u) { real_type v (scale / u); sum_squares = sum_squares * v * v + real_type (1); scale = u; } else { real_type v (u / scale); sum_squares += v * v; } ++ it; } return scale * type_traits::type_sqrt (sum_squares); #endif } // Sparse case template static BOOST_UBLAS_INLINE result_type apply (I it, const I &it_end) { #ifndef BOOST_UBLAS_SCALED_NORM real_type t = real_type (); while (it != it_end) { real_type u (type_traits::norm_2 (*it)); t += u * u; ++ it; } return type_traits::type_sqrt (t); #else real_type scale = real_type (); real_type sum_squares (1); while (it != it_end) { real_type u (type_traits::norm_2 (*it)); if (scale < u) { real_type v (scale / u); sum_squares = sum_squares * v * v + real_type (1); scale = u; } else { real_type v (u / scale); sum_squares += v * v; } ++ it; } return scale * type_traits::type_sqrt (sum_squares); #endif } }; template struct vector_norm_inf: public vector_scalar_real_unary_functor { typedef typename vector_scalar_real_unary_functor::value_type value_type; typedef typename vector_scalar_real_unary_functor::real_type real_type; typedef typename vector_scalar_real_unary_functor::result_type result_type; template static BOOST_UBLAS_INLINE result_type apply (const vector_expression &e) { real_type t = real_type (); typedef typename E::size_type vector_size_type; vector_size_type size (e ().size ()); for (vector_size_type i = 0; i < size; ++ i) { real_type u (type_traits::norm_inf (e () (i))); if (u > t) t = u; } return t; } // Dense case template static BOOST_UBLAS_INLINE result_type apply (D size, I it) { real_type t = real_type (); while (-- size >= 0) { real_type u (type_traits::norm_inf (*it)); if (u > t) t = u; ++ it; } return t; } // Sparse case template static BOOST_UBLAS_INLINE result_type apply (I it, const I &it_end) { real_type t = real_type (); while (it != it_end) { real_type u (type_traits::norm_inf (*it)); if (u > t) t = u; ++ it; } return t; } }; // Unary returning index template struct vector_scalar_index_unary_functor { typedef typename V::value_type value_type; typedef typename type_traits::real_type real_type; typedef typename V::size_type result_type; }; template struct vector_index_norm_inf: public vector_scalar_index_unary_functor { typedef typename vector_scalar_index_unary_functor::value_type value_type; typedef typename vector_scalar_index_unary_functor::real_type real_type; typedef typename vector_scalar_index_unary_functor::result_type result_type; template static BOOST_UBLAS_INLINE result_type apply (const vector_expression &e) { // ISSUE For CBLAS compatibility return 0 index in empty case result_type i_norm_inf (0); real_type t = real_type (); typedef typename E::size_type vector_size_type; vector_size_type size (e ().size ()); for (vector_size_type i = 0; i < size; ++ i) { real_type u (type_traits::norm_inf (e () (i))); if (u > t) { i_norm_inf = i; t = u; } } return i_norm_inf; } // Dense case template static BOOST_UBLAS_INLINE result_type apply (D size, I it) { // ISSUE For CBLAS compatibility return 0 index in empty case result_type i_norm_inf (0); real_type t = real_type (); while (-- size >= 0) { real_type u (type_traits::norm_inf (*it)); if (u > t) { i_norm_inf = it.index (); t = u; } ++ it; } return i_norm_inf; } // Sparse case template static BOOST_UBLAS_INLINE result_type apply (I it, const I &it_end) { // ISSUE For CBLAS compatibility return 0 index in empty case result_type i_norm_inf (0); real_type t = real_type (); while (it != it_end) { real_type u (type_traits::norm_inf (*it)); if (u > t) { i_norm_inf = it.index (); t = u; } ++ it; } return i_norm_inf; } }; // Binary returning scalar template struct vector_scalar_binary_functor { typedef TV value_type; typedef TV result_type; }; template struct vector_inner_prod: public vector_scalar_binary_functor { typedef typename vector_scalar_binary_functor::value_type value_type; typedef typename vector_scalar_binary_functor::result_type result_type; template static BOOST_UBLAS_INLINE result_type apply (const vector_container &c1, const vector_container &c2) { #ifdef BOOST_UBLAS_USE_SIMD using namespace raw; typedef typename C1::size_type vector_size_type; vector_size_type size (BOOST_UBLAS_SAME (c1 ().size (), c2 ().size ())); const typename V1::value_type *data1 = data_const (c1 ()); const typename V1::value_type *data2 = data_const (c2 ()); vector_size_type s1 = stride (c1 ()); vector_size_type s2 = stride (c2 ()); result_type t = result_type (0); if (s1 == 1 && s2 == 1) { for (vector_size_type i = 0; i < size; ++ i) t += data1 [i] * data2 [i]; } else if (s2 == 1) { for (vector_size_type i = 0, i1 = 0; i < size; ++ i, i1 += s1) t += data1 [i1] * data2 [i]; } else if (s1 == 1) { for (vector_size_type i = 0, i2 = 0; i < size; ++ i, i2 += s2) t += data1 [i] * data2 [i2]; } else { for (vector_size_type i = 0, i1 = 0, i2 = 0; i < size; ++ i, i1 += s1, i2 += s2) t += data1 [i1] * data2 [i2]; } return t; #elif defined(BOOST_UBLAS_HAVE_BINDINGS) return boost::numeric::bindings::atlas::dot (c1 (), c2 ()); #else return apply (static_cast > (c1), static_cast > (c2)); #endif } template static BOOST_UBLAS_INLINE result_type apply (const vector_expression &e1, const vector_expression &e2) { typedef typename E1::size_type vector_size_type; vector_size_type size (BOOST_UBLAS_SAME (e1 ().size (), e2 ().size ())); result_type t = result_type (0); #ifndef BOOST_UBLAS_USE_DUFF_DEVICE for (vector_size_type i = 0; i < size; ++ i) t += e1 () (i) * e2 () (i); #else vector_size_type i (0); DD (size, 4, r, (t += e1 () (i) * e2 () (i), ++ i)); #endif return t; } // Dense case template static BOOST_UBLAS_INLINE result_type apply (D size, I1 it1, I2 it2) { result_type t = result_type (0); #ifndef BOOST_UBLAS_USE_DUFF_DEVICE while (-- size >= 0) t += *it1 * *it2, ++ it1, ++ it2; #else DD (size, 4, r, (t += *it1 * *it2, ++ it1, ++ it2)); #endif return t; } // Packed case template static BOOST_UBLAS_INLINE result_type apply (I1 it1, const I1 &it1_end, I2 it2, const I2 &it2_end) { result_type t = result_type (0); typedef typename I1::difference_type vector_difference_type; vector_difference_type it1_size (it1_end - it1); vector_difference_type it2_size (it2_end - it2); vector_difference_type diff (0); if (it1_size > 0 && it2_size > 0) diff = it2.index () - it1.index (); if (diff != 0) { vector_difference_type size = (std::min) (diff, it1_size); if (size > 0) { it1 += size; it1_size -= size; diff -= size; } size = (std::min) (- diff, it2_size); if (size > 0) { it2 += size; it2_size -= size; diff += size; } } vector_difference_type size ((std::min) (it1_size, it2_size)); while (-- size >= 0) t += *it1 * *it2, ++ it1, ++ it2; return t; } // Sparse case template static BOOST_UBLAS_INLINE result_type apply (I1 it1, const I1 &it1_end, I2 it2, const I2 &it2_end, sparse_bidirectional_iterator_tag) { result_type t = result_type (0); if (it1 != it1_end && it2 != it2_end) { while (true) { if (it1.index () == it2.index ()) { t += *it1 * *it2, ++ it1, ++ it2; if (it1 == it1_end || it2 == it2_end) break; } else if (it1.index () < it2.index ()) { increment (it1, it1_end, it2.index () - it1.index ()); if (it1 == it1_end) break; } else if (it1.index () > it2.index ()) { increment (it2, it2_end, it1.index () - it2.index ()); if (it2 == it2_end) break; } } } return t; } }; // Matrix functors // Binary returning vector template struct matrix_vector_binary_functor { typedef typename M1::size_type size_type; typedef typename M1::difference_type difference_type; typedef TV value_type; typedef TV result_type; }; template struct matrix_vector_prod1: public matrix_vector_binary_functor { typedef typename matrix_vector_binary_functor::size_type size_type; typedef typename matrix_vector_binary_functor::difference_type difference_type; typedef typename matrix_vector_binary_functor::value_type value_type; typedef typename matrix_vector_binary_functor::result_type result_type; template static BOOST_UBLAS_INLINE result_type apply (const matrix_container &c1, const vector_container &c2, size_type i) { #ifdef BOOST_UBLAS_USE_SIMD using namespace raw; size_type size = BOOST_UBLAS_SAME (c1 ().size2 (), c2 ().size ()); const typename M1::value_type *data1 = data_const (c1 ()) + i * stride1 (c1 ()); const typename M2::value_type *data2 = data_const (c2 ()); size_type s1 = stride2 (c1 ()); size_type s2 = stride (c2 ()); result_type t = result_type (0); if (s1 == 1 && s2 == 1) { for (size_type j = 0; j < size; ++ j) t += data1 [j] * data2 [j]; } else if (s2 == 1) { for (size_type j = 0, j1 = 0; j < size; ++ j, j1 += s1) t += data1 [j1] * data2 [j]; } else if (s1 == 1) { for (size_type j = 0, j2 = 0; j < size; ++ j, j2 += s2) t += data1 [j] * data2 [j2]; } else { for (size_type j = 0, j1 = 0, j2 = 0; j < size; ++ j, j1 += s1, j2 += s2) t += data1 [j1] * data2 [j2]; } return t; #elif defined(BOOST_UBLAS_HAVE_BINDINGS) return boost::numeric::bindings::atlas::dot (c1 ().row (i), c2 ()); #else return apply (static_cast > (c1), static_cast > (c2, i)); #endif } template static BOOST_UBLAS_INLINE result_type apply (const matrix_expression &e1, const vector_expression &e2, size_type i) { size_type size = BOOST_UBLAS_SAME (e1 ().size2 (), e2 ().size ()); result_type t = result_type (0); #ifndef BOOST_UBLAS_USE_DUFF_DEVICE for (size_type j = 0; j < size; ++ j) t += e1 () (i, j) * e2 () (j); #else size_type j (0); DD (size, 4, r, (t += e1 () (i, j) * e2 () (j), ++ j)); #endif return t; } // Dense case template static BOOST_UBLAS_INLINE result_type apply (difference_type size, I1 it1, I2 it2) { result_type t = result_type (0); #ifndef BOOST_UBLAS_USE_DUFF_DEVICE while (-- size >= 0) t += *it1 * *it2, ++ it1, ++ it2; #else DD (size, 4, r, (t += *it1 * *it2, ++ it1, ++ it2)); #endif return t; } // Packed case template static BOOST_UBLAS_INLINE result_type apply (I1 it1, const I1 &it1_end, I2 it2, const I2 &it2_end) { result_type t = result_type (0); difference_type it1_size (it1_end - it1); difference_type it2_size (it2_end - it2); difference_type diff (0); if (it1_size > 0 && it2_size > 0) diff = it2.index () - it1.index2 (); if (diff != 0) { difference_type size = (std::min) (diff, it1_size); if (size > 0) { it1 += size; it1_size -= size; diff -= size; } size = (std::min) (- diff, it2_size); if (size > 0) { it2 += size; it2_size -= size; diff += size; } } difference_type size ((std::min) (it1_size, it2_size)); while (-- size >= 0) t += *it1 * *it2, ++ it1, ++ it2; return t; } // Sparse case template static BOOST_UBLAS_INLINE result_type apply (I1 it1, const I1 &it1_end, I2 it2, const I2 &it2_end, sparse_bidirectional_iterator_tag, sparse_bidirectional_iterator_tag) { result_type t = result_type (0); if (it1 != it1_end && it2 != it2_end) { size_type it1_index = it1.index2 (), it2_index = it2.index (); while (true) { difference_type compare = it1_index - it2_index; if (compare == 0) { t += *it1 * *it2, ++ it1, ++ it2; if (it1 != it1_end && it2 != it2_end) { it1_index = it1.index2 (); it2_index = it2.index (); } else break; } else if (compare < 0) { increment (it1, it1_end, - compare); if (it1 != it1_end) it1_index = it1.index2 (); else break; } else if (compare > 0) { increment (it2, it2_end, compare); if (it2 != it2_end) it2_index = it2.index (); else break; } } } return t; } // Sparse packed case template static BOOST_UBLAS_INLINE result_type apply (I1 it1, const I1 &it1_end, I2 it2, const I2 &/* it2_end */, sparse_bidirectional_iterator_tag, packed_random_access_iterator_tag) { result_type t = result_type (0); while (it1 != it1_end) { t += *it1 * it2 () (it1.index2 ()); ++ it1; } return t; } // Packed sparse case template static BOOST_UBLAS_INLINE result_type apply (I1 it1, const I1 &/* it1_end */, I2 it2, const I2 &it2_end, packed_random_access_iterator_tag, sparse_bidirectional_iterator_tag) { result_type t = result_type (0); while (it2 != it2_end) { t += it1 () (it1.index1 (), it2.index ()) * *it2; ++ it2; } return t; } // Another dispatcher template static BOOST_UBLAS_INLINE result_type apply (I1 it1, const I1 &it1_end, I2 it2, const I2 &it2_end, sparse_bidirectional_iterator_tag) { typedef typename I1::iterator_category iterator1_category; typedef typename I2::iterator_category iterator2_category; return apply (it1, it1_end, it2, it2_end, iterator1_category (), iterator2_category ()); } }; template struct matrix_vector_prod2: public matrix_vector_binary_functor { typedef typename matrix_vector_binary_functor::size_type size_type; typedef typename matrix_vector_binary_functor::difference_type difference_type; typedef typename matrix_vector_binary_functor::value_type value_type; typedef typename matrix_vector_binary_functor::result_type result_type; template static BOOST_UBLAS_INLINE result_type apply (const vector_container &c1, const matrix_container &c2, size_type i) { #ifdef BOOST_UBLAS_USE_SIMD using namespace raw; size_type size = BOOST_UBLAS_SAME (c1 ().size (), c2 ().size1 ()); const typename M1::value_type *data1 = data_const (c1 ()); const typename M2::value_type *data2 = data_const (c2 ()) + i * stride2 (c2 ()); size_type s1 = stride (c1 ()); size_type s2 = stride1 (c2 ()); result_type t = result_type (0); if (s1 == 1 && s2 == 1) { for (size_type j = 0; j < size; ++ j) t += data1 [j] * data2 [j]; } else if (s2 == 1) { for (size_type j = 0, j1 = 0; j < size; ++ j, j1 += s1) t += data1 [j1] * data2 [j]; } else if (s1 == 1) { for (size_type j = 0, j2 = 0; j < size; ++ j, j2 += s2) t += data1 [j] * data2 [j2]; } else { for (size_type j = 0, j1 = 0, j2 = 0; j < size; ++ j, j1 += s1, j2 += s2) t += data1 [j1] * data2 [j2]; } return t; #elif defined(BOOST_UBLAS_HAVE_BINDINGS) return boost::numeric::bindings::atlas::dot (c1 (), c2 ().column (i)); #else return apply (static_cast > (c1), static_cast > (c2, i)); #endif } template static BOOST_UBLAS_INLINE result_type apply (const vector_expression &e1, const matrix_expression &e2, size_type i) { size_type size = BOOST_UBLAS_SAME (e1 ().size (), e2 ().size1 ()); result_type t = result_type (0); #ifndef BOOST_UBLAS_USE_DUFF_DEVICE for (size_type j = 0; j < size; ++ j) t += e1 () (j) * e2 () (j, i); #else size_type j (0); DD (size, 4, r, (t += e1 () (j) * e2 () (j, i), ++ j)); #endif return t; } // Dense case template static BOOST_UBLAS_INLINE result_type apply (difference_type size, I1 it1, I2 it2) { result_type t = result_type (0); #ifndef BOOST_UBLAS_USE_DUFF_DEVICE while (-- size >= 0) t += *it1 * *it2, ++ it1, ++ it2; #else DD (size, 4, r, (t += *it1 * *it2, ++ it1, ++ it2)); #endif return t; } // Packed case template static BOOST_UBLAS_INLINE result_type apply (I1 it1, const I1 &it1_end, I2 it2, const I2 &it2_end) { result_type t = result_type (0); difference_type it1_size (it1_end - it1); difference_type it2_size (it2_end - it2); difference_type diff (0); if (it1_size > 0 && it2_size > 0) diff = it2.index1 () - it1.index (); if (diff != 0) { difference_type size = (std::min) (diff, it1_size); if (size > 0) { it1 += size; it1_size -= size; diff -= size; } size = (std::min) (- diff, it2_size); if (size > 0) { it2 += size; it2_size -= size; diff += size; } } difference_type size ((std::min) (it1_size, it2_size)); while (-- size >= 0) t += *it1 * *it2, ++ it1, ++ it2; return t; } // Sparse case template static BOOST_UBLAS_INLINE result_type apply (I1 it1, const I1 &it1_end, I2 it2, const I2 &it2_end, sparse_bidirectional_iterator_tag, sparse_bidirectional_iterator_tag) { result_type t = result_type (0); if (it1 != it1_end && it2 != it2_end) { size_type it1_index = it1.index (), it2_index = it2.index1 (); while (true) { difference_type compare = it1_index - it2_index; if (compare == 0) { t += *it1 * *it2, ++ it1, ++ it2; if (it1 != it1_end && it2 != it2_end) { it1_index = it1.index (); it2_index = it2.index1 (); } else break; } else if (compare < 0) { increment (it1, it1_end, - compare); if (it1 != it1_end) it1_index = it1.index (); else break; } else if (compare > 0) { increment (it2, it2_end, compare); if (it2 != it2_end) it2_index = it2.index1 (); else break; } } } return t; } // Packed sparse case template static BOOST_UBLAS_INLINE result_type apply (I1 it1, const I1 &/* it1_end */, I2 it2, const I2 &it2_end, packed_random_access_iterator_tag, sparse_bidirectional_iterator_tag) { result_type t = result_type (0); while (it2 != it2_end) { t += it1 () (it2.index1 ()) * *it2; ++ it2; } return t; } // Sparse packed case template static BOOST_UBLAS_INLINE result_type apply (I1 it1, const I1 &it1_end, I2 it2, const I2 &/* it2_end */, sparse_bidirectional_iterator_tag, packed_random_access_iterator_tag) { result_type t = result_type (0); while (it1 != it1_end) { t += *it1 * it2 () (it1.index (), it2.index2 ()); ++ it1; } return t; } // Another dispatcher template static BOOST_UBLAS_INLINE result_type apply (I1 it1, const I1 &it1_end, I2 it2, const I2 &it2_end, sparse_bidirectional_iterator_tag) { typedef typename I1::iterator_category iterator1_category; typedef typename I2::iterator_category iterator2_category; return apply (it1, it1_end, it2, it2_end, iterator1_category (), iterator2_category ()); } }; // Binary returning matrix template struct matrix_matrix_binary_functor { typedef typename M1::size_type size_type; typedef typename M1::difference_type difference_type; typedef TV value_type; typedef TV result_type; }; template struct matrix_matrix_prod: public matrix_matrix_binary_functor { typedef typename matrix_matrix_binary_functor::size_type size_type; typedef typename matrix_matrix_binary_functor::difference_type difference_type; typedef typename matrix_matrix_binary_functor::value_type value_type; typedef typename matrix_matrix_binary_functor::result_type result_type; template static BOOST_UBLAS_INLINE result_type apply (const matrix_container &c1, const matrix_container &c2, size_type i, size_type j) { #ifdef BOOST_UBLAS_USE_SIMD using namespace raw; size_type size = BOOST_UBLAS_SAME (c1 ().size2 (), c2 ().sizc1 ()); const typename M1::value_type *data1 = data_const (c1 ()) + i * stride1 (c1 ()); const typename M2::value_type *data2 = data_const (c2 ()) + j * stride2 (c2 ()); size_type s1 = stride2 (c1 ()); size_type s2 = stride1 (c2 ()); result_type t = result_type (0); if (s1 == 1 && s2 == 1) { for (size_type k = 0; k < size; ++ k) t += data1 [k] * data2 [k]; } else if (s2 == 1) { for (size_type k = 0, k1 = 0; k < size; ++ k, k1 += s1) t += data1 [k1] * data2 [k]; } else if (s1 == 1) { for (size_type k = 0, k2 = 0; k < size; ++ k, k2 += s2) t += data1 [k] * data2 [k2]; } else { for (size_type k = 0, k1 = 0, k2 = 0; k < size; ++ k, k1 += s1, k2 += s2) t += data1 [k1] * data2 [k2]; } return t; #elif defined(BOOST_UBLAS_HAVE_BINDINGS) return boost::numeric::bindings::atlas::dot (c1 ().row (i), c2 ().column (j)); #else return apply (static_cast > (c1), static_cast > (c2, i)); #endif } template static BOOST_UBLAS_INLINE result_type apply (const matrix_expression &e1, const matrix_expression &e2, size_type i, size_type j) { size_type size = BOOST_UBLAS_SAME (e1 ().size2 (), e2 ().size1 ()); result_type t = result_type (0); #ifndef BOOST_UBLAS_USE_DUFF_DEVICE for (size_type k = 0; k < size; ++ k) t += e1 () (i, k) * e2 () (k, j); #else size_type k (0); DD (size, 4, r, (t += e1 () (i, k) * e2 () (k, j), ++ k)); #endif return t; } // Dense case template static BOOST_UBLAS_INLINE result_type apply (difference_type size, I1 it1, I2 it2) { result_type t = result_type (0); #ifndef BOOST_UBLAS_USE_DUFF_DEVICE while (-- size >= 0) t += *it1 * *it2, ++ it1, ++ it2; #else DD (size, 4, r, (t += *it1 * *it2, ++ it1, ++ it2)); #endif return t; } // Packed case template static BOOST_UBLAS_INLINE result_type apply (I1 it1, const I1 &it1_end, I2 it2, const I2 &it2_end, packed_random_access_iterator_tag) { result_type t = result_type (0); difference_type it1_size (it1_end - it1); difference_type it2_size (it2_end - it2); difference_type diff (0); if (it1_size > 0 && it2_size > 0) diff = it2.index1 () - it1.index2 (); if (diff != 0) { difference_type size = (std::min) (diff, it1_size); if (size > 0) { it1 += size; it1_size -= size; diff -= size; } size = (std::min) (- diff, it2_size); if (size > 0) { it2 += size; it2_size -= size; diff += size; } } difference_type size ((std::min) (it1_size, it2_size)); while (-- size >= 0) t += *it1 * *it2, ++ it1, ++ it2; return t; } // Sparse case template static BOOST_UBLAS_INLINE result_type apply (I1 it1, const I1 &it1_end, I2 it2, const I2 &it2_end, sparse_bidirectional_iterator_tag) { result_type t = result_type (0); if (it1 != it1_end && it2 != it2_end) { size_type it1_index = it1.index2 (), it2_index = it2.index1 (); while (true) { difference_type compare = difference_type (it1_index - it2_index); if (compare == 0) { t += *it1 * *it2, ++ it1, ++ it2; if (it1 != it1_end && it2 != it2_end) { it1_index = it1.index2 (); it2_index = it2.index1 (); } else break; } else if (compare < 0) { increment (it1, it1_end, - compare); if (it1 != it1_end) it1_index = it1.index2 (); else break; } else if (compare > 0) { increment (it2, it2_end, compare); if (it2 != it2_end) it2_index = it2.index1 (); else break; } } } return t; } }; // Unary returning scalar norm template struct matrix_scalar_real_unary_functor { typedef typename M::value_type value_type; typedef typename type_traits::real_type real_type; typedef real_type result_type; }; template struct matrix_norm_1: public matrix_scalar_real_unary_functor { typedef typename matrix_scalar_real_unary_functor::value_type value_type; typedef typename matrix_scalar_real_unary_functor::real_type real_type; typedef typename matrix_scalar_real_unary_functor::result_type result_type; template static BOOST_UBLAS_INLINE result_type apply (const matrix_expression &e) { real_type t = real_type (); typedef typename E::size_type matrix_size_type; matrix_size_type size2 (e ().size2 ()); for (matrix_size_type j = 0; j < size2; ++ j) { real_type u = real_type (); matrix_size_type size1 (e ().size1 ()); for (matrix_size_type i = 0; i < size1; ++ i) { real_type v (type_traits::norm_1 (e () (i, j))); u += v; } if (u > t) t = u; } return t; } }; template struct matrix_norm_frobenius: public matrix_scalar_real_unary_functor { typedef typename matrix_scalar_real_unary_functor::value_type value_type; typedef typename matrix_scalar_real_unary_functor::real_type real_type; typedef typename matrix_scalar_real_unary_functor::result_type result_type; template static BOOST_UBLAS_INLINE result_type apply (const matrix_expression &e) { real_type t = real_type (); typedef typename E::size_type matrix_size_type; matrix_size_type size1 (e ().size1 ()); for (matrix_size_type i = 0; i < size1; ++ i) { matrix_size_type size2 (e ().size2 ()); for (matrix_size_type j = 0; j < size2; ++ j) { real_type u (type_traits::norm_2 (e () (i, j))); t += u * u; } } return type_traits::type_sqrt (t); } }; template struct matrix_norm_inf: public matrix_scalar_real_unary_functor { typedef typename matrix_scalar_real_unary_functor::value_type value_type; typedef typename matrix_scalar_real_unary_functor::real_type real_type; typedef typename matrix_scalar_real_unary_functor::result_type result_type; template static BOOST_UBLAS_INLINE result_type apply (const matrix_expression &e) { real_type t = real_type (); typedef typename E::size_type matrix_size_type; matrix_size_type size1 (e ().size1 ()); for (matrix_size_type i = 0; i < size1; ++ i) { real_type u = real_type (); matrix_size_type size2 (e ().size2 ()); for (matrix_size_type j = 0; j < size2; ++ j) { real_type v (type_traits::norm_inf (e () (i, j))); u += v; } if (u > t) t = u; } return t; } }; // This functor defines storage layout and it's properties // matrix (i,j) -> storage [i * size_i + j] template struct basic_row_major { typedef Z size_type; typedef D difference_type; typedef row_major_tag orientation_category; static BOOST_UBLAS_INLINE size_type storage_size (size_type size_i, size_type size_j) { // Guard against size_type overflow BOOST_UBLAS_CHECK (size_j == 0 || size_i <= (std::numeric_limits::max) () / size_j, bad_size ()); return size_i * size_j; } // Indexing conversion to storage element static BOOST_UBLAS_INLINE size_type element (size_type i, size_type size_i, size_type j, size_type size_j) { BOOST_UBLAS_CHECK (i < size_i, bad_index ()); BOOST_UBLAS_CHECK (j < size_j, bad_index ()); detail::ignore_unused_variable_warning(size_i); // Guard against size_type overflow BOOST_UBLAS_CHECK (i <= ((std::numeric_limits::max) () - j) / size_j, bad_index ()); return i * size_j + j; } static BOOST_UBLAS_INLINE size_type address (size_type i, size_type size_i, size_type j, size_type size_j) { BOOST_UBLAS_CHECK (i <= size_i, bad_index ()); BOOST_UBLAS_CHECK (j <= size_j, bad_index ()); // Guard against size_type overflow - address may be size_j past end of storage BOOST_UBLAS_CHECK (size_j == 0 || i <= ((std::numeric_limits::max) () - j) / size_j, bad_index ()); detail::ignore_unused_variable_warning(size_i); return i * size_j + j; } // Storage element to index conversion static BOOST_UBLAS_INLINE difference_type distance_i (difference_type k, size_type /* size_i */, size_type size_j) { return size_j != 0 ? k / size_j : 0; } static BOOST_UBLAS_INLINE difference_type distance_j (difference_type k, size_type /* size_i */, size_type /* size_j */) { return k; } static BOOST_UBLAS_INLINE size_type index_i (difference_type k, size_type /* size_i */, size_type size_j) { return size_j != 0 ? k / size_j : 0; } static BOOST_UBLAS_INLINE size_type index_j (difference_type k, size_type /* size_i */, size_type size_j) { return size_j != 0 ? k % size_j : 0; } static BOOST_UBLAS_INLINE bool fast_i () { return false; } static BOOST_UBLAS_INLINE bool fast_j () { return true; } // Iterating storage elements template static BOOST_UBLAS_INLINE void increment_i (I &it, size_type /* size_i */, size_type size_j) { it += size_j; } template static BOOST_UBLAS_INLINE void increment_i (I &it, difference_type n, size_type /* size_i */, size_type size_j) { it += n * size_j; } template static BOOST_UBLAS_INLINE void decrement_i (I &it, size_type /* size_i */, size_type size_j) { it -= size_j; } template static BOOST_UBLAS_INLINE void decrement_i (I &it, difference_type n, size_type /* size_i */, size_type size_j) { it -= n * size_j; } template static BOOST_UBLAS_INLINE void increment_j (I &it, size_type /* size_i */, size_type /* size_j */) { ++ it; } template static BOOST_UBLAS_INLINE void increment_j (I &it, difference_type n, size_type /* size_i */, size_type /* size_j */) { it += n; } template static BOOST_UBLAS_INLINE void decrement_j (I &it, size_type /* size_i */, size_type /* size_j */) { -- it; } template static BOOST_UBLAS_INLINE void decrement_j (I &it, difference_type n, size_type /* size_i */, size_type /* size_j */) { it -= n; } // Triangular access static BOOST_UBLAS_INLINE size_type triangular_size (size_type size_i, size_type size_j) { size_type size = (std::max) (size_i, size_j); // Guard against size_type overflow - simplified BOOST_UBLAS_CHECK (size == 0 || size / 2 < (std::numeric_limits::max) () / size /* +1/2 */, bad_size ()); return ((size + 1) * size) / 2; } static BOOST_UBLAS_INLINE size_type lower_element (size_type i, size_type size_i, size_type j, size_type size_j) { BOOST_UBLAS_CHECK (i < size_i, bad_index ()); BOOST_UBLAS_CHECK (j < size_j, bad_index ()); BOOST_UBLAS_CHECK (i >= j, bad_index ()); detail::ignore_unused_variable_warning(size_i); detail::ignore_unused_variable_warning(size_j); // FIXME size_type overflow // sigma_i (i + 1) = (i + 1) * i / 2 // i = 0 1 2 3, sigma = 0 1 3 6 return ((i + 1) * i) / 2 + j; } static BOOST_UBLAS_INLINE size_type upper_element (size_type i, size_type size_i, size_type j, size_type size_j) { BOOST_UBLAS_CHECK (i < size_i, bad_index ()); BOOST_UBLAS_CHECK (j < size_j, bad_index ()); BOOST_UBLAS_CHECK (i <= j, bad_index ()); // FIXME size_type overflow // sigma_i (size - i) = size * i - i * (i - 1) / 2 // i = 0 1 2 3, sigma = 0 4 7 9 return (i * (2 * (std::max) (size_i, size_j) - i + 1)) / 2 + j - i; } // Major and minor indices static BOOST_UBLAS_INLINE size_type index_M (size_type index1, size_type /* index2 */) { return index1; } static BOOST_UBLAS_INLINE size_type index_m (size_type /* index1 */, size_type index2) { return index2; } static BOOST_UBLAS_INLINE size_type size_M (size_type size_i, size_type /* size_j */) { return size_i; } static BOOST_UBLAS_INLINE size_type size_m (size_type /* size_i */, size_type size_j) { return size_j; } }; // This functor defines storage layout and it's properties // matrix (i,j) -> storage [i + j * size_i] template struct basic_column_major { typedef Z size_type; typedef D difference_type; typedef column_major_tag orientation_category; static BOOST_UBLAS_INLINE size_type storage_size (size_type size_i, size_type size_j) { // Guard against size_type overflow BOOST_UBLAS_CHECK (size_i == 0 || size_j <= (std::numeric_limits::max) () / size_i, bad_size ()); return size_i * size_j; } // Indexing conversion to storage element static BOOST_UBLAS_INLINE size_type element (size_type i, size_type size_i, size_type j, size_type size_j) { BOOST_UBLAS_CHECK (i < size_i, bad_index ()); BOOST_UBLAS_CHECK (j < size_j, bad_index ()); detail::ignore_unused_variable_warning(size_j); // Guard against size_type overflow BOOST_UBLAS_CHECK (j <= ((std::numeric_limits::max) () - i) / size_i, bad_index ()); return i + j * size_i; } static BOOST_UBLAS_INLINE size_type address (size_type i, size_type size_i, size_type j, size_type size_j) { BOOST_UBLAS_CHECK (i <= size_i, bad_index ()); BOOST_UBLAS_CHECK (j <= size_j, bad_index ()); detail::ignore_unused_variable_warning(size_j); // Guard against size_type overflow - address may be size_i past end of storage BOOST_UBLAS_CHECK (size_i == 0 || j <= ((std::numeric_limits::max) () - i) / size_i, bad_index ()); return i + j * size_i; } // Storage element to index conversion static BOOST_UBLAS_INLINE difference_type distance_i (difference_type k, size_type /* size_i */, size_type /* size_j */) { return k; } static BOOST_UBLAS_INLINE difference_type distance_j (difference_type k, size_type size_i, size_type /* size_j */) { return size_i != 0 ? k / size_i : 0; } static BOOST_UBLAS_INLINE size_type index_i (difference_type k, size_type size_i, size_type /* size_j */) { return size_i != 0 ? k % size_i : 0; } static BOOST_UBLAS_INLINE size_type index_j (difference_type k, size_type size_i, size_type /* size_j */) { return size_i != 0 ? k / size_i : 0; } static BOOST_UBLAS_INLINE bool fast_i () { return true; } static BOOST_UBLAS_INLINE bool fast_j () { return false; } // Iterating template static BOOST_UBLAS_INLINE void increment_i (I &it, size_type /* size_i */, size_type /* size_j */) { ++ it; } template static BOOST_UBLAS_INLINE void increment_i (I &it, difference_type n, size_type /* size_i */, size_type /* size_j */) { it += n; } template static BOOST_UBLAS_INLINE void decrement_i (I &it, size_type /* size_i */, size_type /* size_j */) { -- it; } template static BOOST_UBLAS_INLINE void decrement_i (I &it, difference_type n, size_type /* size_i */, size_type /* size_j */) { it -= n; } template static BOOST_UBLAS_INLINE void increment_j (I &it, size_type size_i, size_type /* size_j */) { it += size_i; } template static BOOST_UBLAS_INLINE void increment_j (I &it, difference_type n, size_type size_i, size_type /* size_j */) { it += n * size_i; } template static BOOST_UBLAS_INLINE void decrement_j (I &it, size_type size_i, size_type /* size_j */) { it -= size_i; } template static BOOST_UBLAS_INLINE void decrement_j (I &it, difference_type n, size_type size_i, size_type /* size_j */) { it -= n* size_i; } // Triangular access static BOOST_UBLAS_INLINE size_type triangular_size (size_type size_i, size_type size_j) { size_type size = (std::max) (size_i, size_j); // Guard against size_type overflow - simplified BOOST_UBLAS_CHECK (size == 0 || size / 2 < (std::numeric_limits::max) () / size /* +1/2 */, bad_size ()); return ((size + 1) * size) / 2; } static BOOST_UBLAS_INLINE size_type lower_element (size_type i, size_type size_i, size_type j, size_type size_j) { BOOST_UBLAS_CHECK (i < size_i, bad_index ()); BOOST_UBLAS_CHECK (j < size_j, bad_index ()); BOOST_UBLAS_CHECK (i >= j, bad_index ()); // FIXME size_type overflow // sigma_j (size - j) = size * j - j * (j - 1) / 2 // j = 0 1 2 3, sigma = 0 4 7 9 return i - j + (j * (2 * (std::max) (size_i, size_j) - j + 1)) / 2; } static BOOST_UBLAS_INLINE size_type upper_element (size_type i, size_type size_i, size_type j, size_type size_j) { BOOST_UBLAS_CHECK (i < size_i, bad_index ()); BOOST_UBLAS_CHECK (j < size_j, bad_index ()); BOOST_UBLAS_CHECK (i <= j, bad_index ()); // FIXME size_type overflow // sigma_j (j + 1) = (j + 1) * j / 2 // j = 0 1 2 3, sigma = 0 1 3 6 return i + ((j + 1) * j) / 2; } // Major and minor indices static BOOST_UBLAS_INLINE size_type index_M (size_type /* index1 */, size_type index2) { return index2; } static BOOST_UBLAS_INLINE size_type index_m (size_type index1, size_type /* index2 */) { return index1; } static BOOST_UBLAS_INLINE size_type size_M (size_type /* size_i */, size_type size_j) { return size_j; } static BOOST_UBLAS_INLINE size_type size_m (size_type size_i, size_type /* size_j */) { return size_i; } }; template struct basic_full { typedef Z size_type; template static BOOST_UBLAS_INLINE size_type packed_size (L, size_type size_i, size_type size_j) { return L::storage_size (size_i, size_j); } static BOOST_UBLAS_INLINE bool zero (size_type /* i */, size_type /* j */) { return false; } static BOOST_UBLAS_INLINE bool one (size_type /* i */, size_type /* j */) { return false; } static BOOST_UBLAS_INLINE bool other (size_type /* i */, size_type /* j */) { return true; } static BOOST_UBLAS_INLINE size_type restrict1 (size_type i, size_type j) { return i; } static BOOST_UBLAS_INLINE size_type restrict2 (size_type i, size_type j) { return j; } static BOOST_UBLAS_INLINE size_type mutable_restrict1 (size_type i, size_type j) { return i; } static BOOST_UBLAS_INLINE size_type mutable_restrict2 (size_type i, size_type j) { return j; } }; template struct basic_lower { typedef Z size_type; template static BOOST_UBLAS_INLINE size_type packed_size (L, size_type size_i, size_type size_j) { return L::triangular_size (size_i, size_j); } static BOOST_UBLAS_INLINE bool zero (size_type i, size_type j) { return j > i; } static BOOST_UBLAS_INLINE bool one (size_type /* i */, size_type /* j */) { return false; } static BOOST_UBLAS_INLINE bool other (size_type i, size_type j) { return j <= i; } template static BOOST_UBLAS_INLINE size_type element (L, size_type i, size_type size_i, size_type j, size_type size_j) { return L::lower_element (i, size_i, j, size_j); } static BOOST_UBLAS_INLINE size_type restrict1 (size_type i, size_type j) { return (std::max) (i, j); } static BOOST_UBLAS_INLINE size_type restrict2 (size_type i, size_type j) { return (std::min) (i + 1, j); } static BOOST_UBLAS_INLINE size_type mutable_restrict1 (size_type i, size_type j) { return (std::max) (i, j); } static BOOST_UBLAS_INLINE size_type mutable_restrict2 (size_type i, size_type j) { return (std::min) (i + 1, j); } }; template struct basic_upper { typedef Z size_type; template static BOOST_UBLAS_INLINE size_type packed_size (L, size_type size_i, size_type size_j) { return L::triangular_size (size_i, size_j); } static BOOST_UBLAS_INLINE bool zero (size_type i, size_type j) { return j < i; } static BOOST_UBLAS_INLINE bool one (size_type /* i */, size_type /* j */) { return false; } static BOOST_UBLAS_INLINE bool other (size_type i, size_type j) { return j >= i; } template static BOOST_UBLAS_INLINE size_type element (L, size_type i, size_type size_i, size_type j, size_type size_j) { return L::upper_element (i, size_i, j, size_j); } static BOOST_UBLAS_INLINE size_type restrict1 (size_type i, size_type j) { return (std::min) (i, j + 1); } static BOOST_UBLAS_INLINE size_type restrict2 (size_type i, size_type j) { return (std::max) (i, j); } static BOOST_UBLAS_INLINE size_type mutable_restrict1 (size_type i, size_type j) { return (std::min) (i, j + 1); } static BOOST_UBLAS_INLINE size_type mutable_restrict2 (size_type i, size_type j) { return (std::max) (i, j); } }; template struct basic_unit_lower : public basic_lower { typedef Z size_type; template static BOOST_UBLAS_INLINE size_type packed_size (L, size_type size_i, size_type size_j) { // Zero size strict triangles are bad at this point BOOST_UBLAS_CHECK (size_i != 0 && size_j != 0, bad_index ()); return L::triangular_size (size_i - 1, size_j - 1); } static BOOST_UBLAS_INLINE bool one (size_type i, size_type j) { return j == i; } static BOOST_UBLAS_INLINE bool other (size_type i, size_type j) { return j < i; } template static BOOST_UBLAS_INLINE size_type element (L, size_type i, size_type size_i, size_type j, size_type size_j) { // Zero size strict triangles are bad at this point BOOST_UBLAS_CHECK (size_i != 0 && size_j != 0, bad_index ()); return L::lower_element (i, size_i - 1, j, size_j - 1); } static BOOST_UBLAS_INLINE size_type mutable_restrict1 (size_type i, size_type j) { return (std::max) (i, j); } static BOOST_UBLAS_INLINE size_type mutable_restrict2 (size_type i, size_type j) { return (std::min) (i, j); } }; template struct basic_unit_upper : public basic_upper { typedef Z size_type; template static BOOST_UBLAS_INLINE size_type packed_size (L, size_type size_i, size_type size_j) { // Zero size strict triangles are bad at this point BOOST_UBLAS_CHECK (size_i != 0 && size_j != 0, bad_index ()); return L::triangular_size (size_i - 1, size_j - 1); } static BOOST_UBLAS_INLINE bool one (size_type i, size_type j) { return j == i; } static BOOST_UBLAS_INLINE bool other (size_type i, size_type j) { return j > i; } template static BOOST_UBLAS_INLINE size_type element (L, size_type i, size_type size_i, size_type j, size_type size_j) { // Zero size strict triangles are bad at this point BOOST_UBLAS_CHECK (size_i != 0 && size_j != 0, bad_index ()); return L::upper_element (i, size_i - 1, j, size_j - 1); } static BOOST_UBLAS_INLINE size_type mutable_restrict1 (size_type i, size_type j) { return (std::min) (i, j); } static BOOST_UBLAS_INLINE size_type mutable_restrict2 (size_type i, size_type j) { return (std::max) (i, j); } }; template struct basic_strict_lower : public basic_lower { typedef Z size_type; template static BOOST_UBLAS_INLINE size_type packed_size (L, size_type size_i, size_type size_j) { // Zero size strict triangles are bad at this point BOOST_UBLAS_CHECK (size_i != 0 && size_j != 0, bad_index ()); return L::triangular_size (size_i - 1, size_j - 1); } static BOOST_UBLAS_INLINE bool zero (size_type i, size_type j) { return j >= i; } static BOOST_UBLAS_INLINE bool one (size_type /*i*/, size_type /*j*/) { return false; } static BOOST_UBLAS_INLINE bool other (size_type i, size_type j) { return j < i; } template static BOOST_UBLAS_INLINE size_type element (L, size_type i, size_type size_i, size_type j, size_type size_j) { // Zero size strict triangles are bad at this point BOOST_UBLAS_CHECK (size_i != 0 && size_j != 0, bad_index ()); return L::lower_element (i, size_i - 1, j, size_j - 1); } static BOOST_UBLAS_INLINE size_type restrict1 (size_type i, size_type j) { return (std::max) (i, j); } static BOOST_UBLAS_INLINE size_type restrict2 (size_type i, size_type j) { return (std::min) (i, j); } static BOOST_UBLAS_INLINE size_type mutable_restrict1 (size_type i, size_type j) { return (std::max) (i, j); } static BOOST_UBLAS_INLINE size_type mutable_restrict2 (size_type i, size_type j) { return (std::min) (i, j); } }; template struct basic_strict_upper : public basic_upper { typedef Z size_type; template static BOOST_UBLAS_INLINE size_type packed_size (L, size_type size_i, size_type size_j) { // Zero size strict triangles are bad at this point BOOST_UBLAS_CHECK (size_i != 0 && size_j != 0, bad_index ()); return L::triangular_size (size_i - 1, size_j - 1); } static BOOST_UBLAS_INLINE bool zero (size_type i, size_type j) { return j <= i; } static BOOST_UBLAS_INLINE bool one (size_type /*i*/, size_type /*j*/) { return false; } static BOOST_UBLAS_INLINE bool other (size_type i, size_type j) { return j > i; } template static BOOST_UBLAS_INLINE size_type element (L, size_type i, size_type size_i, size_type j, size_type size_j) { // Zero size strict triangles are bad at this point BOOST_UBLAS_CHECK (size_i != 0 && size_j != 0, bad_index ()); return L::upper_element (i, size_i - 1, j, size_j - 1); } static BOOST_UBLAS_INLINE size_type restrict1 (size_type i, size_type j) { return (std::min) (i, j); } static BOOST_UBLAS_INLINE size_type restrict2 (size_type i, size_type j) { return (std::max) (i, j); } static BOOST_UBLAS_INLINE size_type mutable_restrict1 (size_type i, size_type j) { return (std::min) (i, j); } static BOOST_UBLAS_INLINE size_type mutable_restrict2 (size_type i, size_type j) { return (std::max) (i, j); } }; }}} #endif