// Copyright John Maddock 2010. // Copyright Paul A. Bristow 2010. // Use, modification and distribution are subject to the // Boost Software License, Version 1.0. // (See accompanying file LICENSE_1_0.txt // or copy at http://www.boost.org/LICENSE_1_0.txt) #ifndef BOOST_MATH_DISTRIBUTIONS_INVERSE_CHI_SQUARED_HPP #define BOOST_MATH_DISTRIBUTIONS_INVERSE_CHI_SQUARED_HPP #include #include // for incomplete beta. #include // for complements. #include // for error checks. #include // for isfinite // See http://en.wikipedia.org/wiki/Scaled-inverse-chi-square_distribution // for definitions of this scaled version. // See http://en.wikipedia.org/wiki/Inverse-chi-square_distribution // for unscaled version. // http://reference.wolfram.com/mathematica/ref/InverseChiSquareDistribution.html // Weisstein, Eric W. "Inverse Chi-Squared Distribution." From MathWorld--A Wolfram Web Resource. // http://mathworld.wolfram.com/InverseChi-SquaredDistribution.html #include namespace boost{ namespace math{ namespace detail { template inline bool check_inverse_chi_squared( // Check both distribution parameters. const char* function, RealType degrees_of_freedom, // degrees_of_freedom (aka nu). RealType scale, // scale (aka sigma^2) RealType* result, const Policy& pol) { return check_scale(function, scale, result, pol) && check_df(function, degrees_of_freedom, result, pol); } // bool check_inverse_chi_squared } // namespace detail template > class inverse_chi_squared_distribution { public: typedef RealType value_type; typedef Policy policy_type; inverse_chi_squared_distribution(RealType df, RealType scale) : m_df(df), m_scale (scale) { RealType result; detail::check_df( "boost::math::inverse_chi_squared_distribution<%1%>::inverse_chi_squared_distribution", m_df, &result, Policy()) && detail::check_scale( "boost::math::inverse_chi_squared_distribution<%1%>::inverse_chi_squared_distribution", m_scale, &result, Policy()); } // inverse_chi_squared_distribution constructor inverse_chi_squared_distribution(RealType df = 1) : m_df(df) { RealType result; m_scale = 1 / m_df ; // Default scale = 1 / degrees of freedom (Wikipedia definition 1). detail::check_df( "boost::math::inverse_chi_squared_distribution<%1%>::inverse_chi_squared_distribution", m_df, &result, Policy()); } // inverse_chi_squared_distribution RealType degrees_of_freedom()const { return m_df; // aka nu } RealType scale()const { return m_scale; // aka xi } // Parameter estimation: NOT implemented yet. //static RealType find_degrees_of_freedom( // RealType difference_from_variance, // RealType alpha, // RealType beta, // RealType variance, // RealType hint = 100); private: // Data members: RealType m_df; // degrees of freedom are treated as a real number. RealType m_scale; // distribution scale. }; // class chi_squared_distribution typedef inverse_chi_squared_distribution inverse_chi_squared; template inline const std::pair range(const inverse_chi_squared_distribution& /*dist*/) { // Range of permissible values for random variable x. using boost::math::tools::max_value; return std::pair(static_cast(0), max_value()); // 0 to + infinity. } template inline const std::pair support(const inverse_chi_squared_distribution& /*dist*/) { // Range of supported values for random variable x. // This is range where cdf rises from 0 to 1, and outside it, the pdf is zero. return std::pair(static_cast(0), tools::max_value()); // 0 to + infinity. } template RealType pdf(const inverse_chi_squared_distribution& dist, const RealType& x) { BOOST_MATH_STD_USING // for ADL of std functions. RealType df = dist.degrees_of_freedom(); RealType scale = dist.scale(); RealType error_result; static const char* function = "boost::math::pdf(const inverse_chi_squared_distribution<%1%>&, %1%)"; if(false == detail::check_inverse_chi_squared (function, df, scale, &error_result, Policy()) ) { // Bad distribution. return error_result; } if((x < 0) || !(boost::math::isfinite)(x)) { // Bad x. return policies::raise_domain_error( function, "inverse Chi Square parameter was %1%, but must be >= 0 !", x, Policy()); } if(x == 0) { // Treat as special case. return 0; } // Wikipedia scaled inverse chi sq (df, scale) related to inv gamma (df/2, df * scale /2) // so use inverse gamma pdf with shape = df/2, scale df * scale /2 // RealType shape = df /2; // inv_gamma shape // RealType scale = df * scale/2; // inv_gamma scale // RealType result = gamma_p_derivative(shape, scale / x, Policy()) * scale / (x * x); RealType result = df * scale/2 / x; if(result < tools::min_value()) return 0; // Random variable is near enough infinite. result = gamma_p_derivative(df/2, result, Policy()) * df * scale/2; if(result != 0) // prevent 0 / 0: result /= (x * x); return result; } // pdf template inline RealType cdf(const inverse_chi_squared_distribution& dist, const RealType& x) { static const char* function = "boost::math::cdf(const inverse_chi_squared_distribution<%1%>&, %1%)"; RealType df = dist.degrees_of_freedom(); RealType scale = dist.scale(); RealType error_result; if(false == detail::check_inverse_chi_squared(function, df, scale, &error_result, Policy()) ) { // Bad distribution. return error_result; } if((x < 0) || !(boost::math::isfinite)(x)) { // Bad x. return policies::raise_domain_error( function, "inverse Chi Square parameter was %1%, but must be >= 0 !", x, Policy()); } if (x == 0) { // Treat zero as a special case. return 0; } // RealType shape = df /2; // inv_gamma shape, // RealType scale = df * scale/2; // inv_gamma scale, // result = boost::math::gamma_q(shape, scale / x, Policy()); // inverse_gamma code. return boost::math::gamma_q(df / 2, (df * (scale / 2)) / x, Policy()); } // cdf template inline RealType quantile(const inverse_chi_squared_distribution& dist, const RealType& p) { using boost::math::gamma_q_inv; RealType df = dist.degrees_of_freedom(); RealType scale = dist.scale(); static const char* function = "boost::math::quantile(const inverse_chi_squared_distribution<%1%>&, %1%)"; // Error check: RealType error_result; if(false == detail::check_df( function, df, &error_result, Policy()) && detail::check_probability( function, p, &error_result, Policy())) { return error_result; } if(false == detail::check_probability( function, p, &error_result, Policy())) { return error_result; } // RealType shape = df /2; // inv_gamma shape, // RealType scale = df * scale/2; // inv_gamma scale, // result = scale / gamma_q_inv(shape, p, Policy()); RealType result = gamma_q_inv(df /2, p, Policy()); if(result == 0) return policies::raise_overflow_error(function, "Random variable is infinite.", Policy()); result = df * (scale / 2) / result; return result; } // quantile template inline RealType cdf(const complemented2_type, RealType>& c) { using boost::math::gamma_q_inv; RealType const& df = c.dist.degrees_of_freedom(); RealType const& scale = c.dist.scale(); RealType const& x = c.param; static const char* function = "boost::math::cdf(const inverse_chi_squared_distribution<%1%>&, %1%)"; // Error check: RealType error_result; if(false == detail::check_df( function, df, &error_result, Policy())) { return error_result; } if (x == 0) { // Treat zero as a special case. return 1; } if((x < 0) || !(boost::math::isfinite)(x)) { return policies::raise_domain_error( function, "inverse Chi Square parameter was %1%, but must be > 0 !", x, Policy()); } // RealType shape = df /2; // inv_gamma shape, // RealType scale = df * scale/2; // inv_gamma scale, // result = gamma_p(shape, scale/c.param, Policy()); use inv_gamma. return gamma_p(df / 2, (df * scale/2) / x, Policy()); // OK } // cdf(complemented template inline RealType quantile(const complemented2_type, RealType>& c) { using boost::math::gamma_q_inv; RealType const& df = c.dist.degrees_of_freedom(); RealType const& scale = c.dist.scale(); RealType const& q = c.param; static const char* function = "boost::math::quantile(const inverse_chi_squared_distribution<%1%>&, %1%)"; // Error check: RealType error_result; if(false == detail::check_df(function, df, &error_result, Policy())) { return error_result; } if(false == detail::check_probability(function, q, &error_result, Policy())) { return error_result; } // RealType shape = df /2; // inv_gamma shape, // RealType scale = df * scale/2; // inv_gamma scale, // result = scale / gamma_p_inv(shape, q, Policy()); // using inv_gamma. RealType result = gamma_p_inv(df/2, q, Policy()); if(result == 0) return policies::raise_overflow_error(function, "Random variable is infinite.", Policy()); result = (df * scale / 2) / result; return result; } // quantile(const complement template inline RealType mean(const inverse_chi_squared_distribution& dist) { // Mean of inverse Chi-Squared distribution. RealType df = dist.degrees_of_freedom(); RealType scale = dist.scale(); static const char* function = "boost::math::mean(const inverse_chi_squared_distribution<%1%>&)"; if(df <= 2) return policies::raise_domain_error( function, "inverse Chi-Squared distribution only has a mode for degrees of freedom > 2, but got degrees of freedom = %1%.", df, Policy()); return (df * scale) / (df - 2); } // mean template inline RealType variance(const inverse_chi_squared_distribution& dist) { // Variance of inverse Chi-Squared distribution. RealType df = dist.degrees_of_freedom(); RealType scale = dist.scale(); static const char* function = "boost::math::variance(const inverse_chi_squared_distribution<%1%>&)"; if(df <= 4) { return policies::raise_domain_error( function, "inverse Chi-Squared distribution only has a variance for degrees of freedom > 4, but got degrees of freedom = %1%.", df, Policy()); return 2 * dist.degrees_of_freedom(); } return 2 * df * df * scale * scale / ((df - 2)*(df - 2) * (df - 4)); } // variance template inline RealType mode(const inverse_chi_squared_distribution& dist) { // mode is not defined in Mathematica. // See Discussion section http://en.wikipedia.org/wiki/Talk:Scaled-inverse-chi-square_distribution // for origin of the formula used below. RealType df = dist.degrees_of_freedom(); RealType scale = dist.scale(); static const char* function = "boost::math::mode(const inverse_chi_squared_distribution<%1%>&)"; if(df < 0) return policies::raise_domain_error( function, "inverse Chi-Squared distribution only has a mode for degrees of freedom >= 0, but got degrees of freedom = %1%.", df, Policy()); return (df * scale) / (df + 2); } //template //inline RealType median(const inverse_chi_squared_distribution& dist) //{ // Median is given by Quantile[dist, 1/2] // RealType df = dist.degrees_of_freedom(); // if(df <= 1) // return tools::domain_error( // BOOST_CURRENT_FUNCTION, // "The inverse_Chi-Squared distribution only has a median for degrees of freedom >= 0, but got degrees of freedom = %1%.", // df); // return df; //} // Now implemented via quantile(half) in derived accessors. template inline RealType skewness(const inverse_chi_squared_distribution& dist) { BOOST_MATH_STD_USING // For ADL RealType df = dist.degrees_of_freedom(); static const char* function = "boost::math::skewness(const inverse_chi_squared_distribution<%1%>&)"; if(df <= 6) return policies::raise_domain_error( function, "inverse Chi-Squared distribution only has a skewness for degrees of freedom > 6, but got degrees of freedom = %1%.", df, Policy()); return 4 * sqrt (2 * (df - 4)) / (df - 6); // Not a function of scale. } template inline RealType kurtosis(const inverse_chi_squared_distribution& dist) { RealType df = dist.degrees_of_freedom(); static const char* function = "boost::math::kurtosis(const inverse_chi_squared_distribution<%1%>&)"; if(df <= 8) return policies::raise_domain_error( function, "inverse Chi-Squared distribution only has a kurtosis for degrees of freedom > 8, but got degrees of freedom = %1%.", df, Policy()); return kurtosis_excess(dist) + 3; } template inline RealType kurtosis_excess(const inverse_chi_squared_distribution& dist) { RealType df = dist.degrees_of_freedom(); static const char* function = "boost::math::kurtosis(const inverse_chi_squared_distribution<%1%>&)"; if(df <= 8) return policies::raise_domain_error( function, "inverse Chi-Squared distribution only has a kurtosis excess for degrees of freedom > 8, but got degrees of freedom = %1%.", df, Policy()); return 12 * (5 * df - 22) / ((df - 6 )*(df - 8)); // Not a function of scale. } // // Parameter estimation comes last: // } // namespace math } // namespace boost // This include must be at the end, *after* the accessors // for this distribution have been defined, in order to // keep compilers that support two-phase lookup happy. #include #endif // BOOST_MATH_DISTRIBUTIONS_INVERSE_CHI_SQUARED_HPP