// Copyright John Maddock 2006. // Use, modification and distribution are subject to the // Boost Software License, Version 1.0. (See accompanying file // LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt) #ifndef BOOST_STATS_LOGNORMAL_HPP #define BOOST_STATS_LOGNORMAL_HPP // http://www.itl.nist.gov/div898/handbook/eda/section3/eda3669.htm // http://mathworld.wolfram.com/LogNormalDistribution.html // http://en.wikipedia.org/wiki/Lognormal_distribution #include #include #include #include #include namespace boost{ namespace math { namespace detail { template inline bool check_lognormal_x( const char* function, RealType const& x, RealType* result, const Policy& pol) { if((x < 0) || !(boost::math::isfinite)(x)) { *result = policies::raise_domain_error( function, "Random variate is %1% but must be >= 0 !", x, pol); return false; } return true; } } // namespace detail template > class lognormal_distribution { public: typedef RealType value_type; typedef Policy policy_type; lognormal_distribution(RealType location = 0, RealType scale = 1) : m_location(location), m_scale(scale) { RealType result; detail::check_scale("boost::math::lognormal_distribution<%1%>::lognormal_distribution", scale, &result, Policy()); } RealType location()const { return m_location; } RealType scale()const { return m_scale; } private: // // Data members: // RealType m_location; // distribution location. RealType m_scale; // distribution scale. }; typedef lognormal_distribution lognormal; template inline const std::pair range(const lognormal_distribution& /*dist*/) { // Range of permissible values for random variable x is >0 to +infinity. using boost::math::tools::max_value; return std::pair(static_cast(0), max_value()); } template inline const std::pair support(const lognormal_distribution& /*dist*/) { // Range of supported values for random variable x. // This is range where cdf rises from 0 to 1, and outside it, the pdf is zero. using boost::math::tools::max_value; return std::pair(static_cast(0), max_value()); } template RealType pdf(const lognormal_distribution& dist, const RealType& x) { BOOST_MATH_STD_USING // for ADL of std functions RealType mu = dist.location(); RealType sigma = dist.scale(); static const char* function = "boost::math::pdf(const lognormal_distribution<%1%>&, %1%)"; RealType result; if(0 == detail::check_scale(function, sigma, &result, Policy())) return result; if(0 == detail::check_lognormal_x(function, x, &result, Policy())) return result; if(x == 0) return 0; RealType exponent = log(x) - mu; exponent *= -exponent; exponent /= 2 * sigma * sigma; result = exp(exponent); result /= sigma * sqrt(2 * constants::pi()) * x; return result; } template inline RealType cdf(const lognormal_distribution& dist, const RealType& x) { BOOST_MATH_STD_USING // for ADL of std functions static const char* function = "boost::math::cdf(const lognormal_distribution<%1%>&, %1%)"; RealType result; if(0 == detail::check_lognormal_x(function, x, &result, Policy())) return result; if(x == 0) return 0; normal_distribution norm(dist.location(), dist.scale()); return cdf(norm, log(x)); } template inline RealType quantile(const lognormal_distribution& dist, const RealType& p) { BOOST_MATH_STD_USING // for ADL of std functions static const char* function = "boost::math::quantile(const lognormal_distribution<%1%>&, %1%)"; RealType result; if(0 == detail::check_probability(function, p, &result, Policy())) return result; if(p == 0) return 0; if(p == 1) return policies::raise_overflow_error(function, 0, Policy()); normal_distribution norm(dist.location(), dist.scale()); return exp(quantile(norm, p)); } template inline RealType cdf(const complemented2_type, RealType>& c) { BOOST_MATH_STD_USING // for ADL of std functions static const char* function = "boost::math::cdf(const lognormal_distribution<%1%>&, %1%)"; RealType result; if(0 == detail::check_lognormal_x(function, c.param, &result, Policy())) return result; if(c.param == 0) return 1; normal_distribution norm(c.dist.location(), c.dist.scale()); return cdf(complement(norm, log(c.param))); } template inline RealType quantile(const complemented2_type, RealType>& c) { BOOST_MATH_STD_USING // for ADL of std functions static const char* function = "boost::math::quantile(const lognormal_distribution<%1%>&, %1%)"; RealType result; if(0 == detail::check_probability(function, c.param, &result, Policy())) return result; if(c.param == 1) return 0; if(c.param == 0) return policies::raise_overflow_error(function, 0, Policy()); normal_distribution norm(c.dist.location(), c.dist.scale()); return exp(quantile(complement(norm, c.param))); } template inline RealType mean(const lognormal_distribution& dist) { BOOST_MATH_STD_USING // for ADL of std functions RealType mu = dist.location(); RealType sigma = dist.scale(); RealType result; if(0 == detail::check_scale("boost::math::mean(const lognormal_distribution<%1%>&)", sigma, &result, Policy())) return result; return exp(mu + sigma * sigma / 2); } template inline RealType variance(const lognormal_distribution& dist) { BOOST_MATH_STD_USING // for ADL of std functions RealType mu = dist.location(); RealType sigma = dist.scale(); RealType result; if(0 == detail::check_scale("boost::math::variance(const lognormal_distribution<%1%>&)", sigma, &result, Policy())) return result; return boost::math::expm1(sigma * sigma, Policy()) * exp(2 * mu + sigma * sigma); } template inline RealType mode(const lognormal_distribution& dist) { BOOST_MATH_STD_USING // for ADL of std functions RealType mu = dist.location(); RealType sigma = dist.scale(); RealType result; if(0 == detail::check_scale("boost::math::mode(const lognormal_distribution<%1%>&)", sigma, &result, Policy())) return result; return exp(mu - sigma * sigma); } template inline RealType median(const lognormal_distribution& dist) { BOOST_MATH_STD_USING // for ADL of std functions RealType mu = dist.location(); return exp(mu); // e^mu } template inline RealType skewness(const lognormal_distribution& dist) { BOOST_MATH_STD_USING // for ADL of std functions //RealType mu = dist.location(); RealType sigma = dist.scale(); RealType ss = sigma * sigma; RealType ess = exp(ss); RealType result; if(0 == detail::check_scale("boost::math::skewness(const lognormal_distribution<%1%>&)", sigma, &result, Policy())) return result; return (ess + 2) * sqrt(boost::math::expm1(ss, Policy())); } template inline RealType kurtosis(const lognormal_distribution& dist) { BOOST_MATH_STD_USING // for ADL of std functions //RealType mu = dist.location(); RealType sigma = dist.scale(); RealType ss = sigma * sigma; RealType result; if(0 == detail::check_scale("boost::math::kurtosis(const lognormal_distribution<%1%>&)", sigma, &result, Policy())) return result; return exp(4 * ss) + 2 * exp(3 * ss) + 3 * exp(2 * ss) - 3; } template inline RealType kurtosis_excess(const lognormal_distribution& dist) { BOOST_MATH_STD_USING // for ADL of std functions // RealType mu = dist.location(); RealType sigma = dist.scale(); RealType ss = sigma * sigma; RealType result; if(0 == detail::check_scale("boost::math::kurtosis_excess(const lognormal_distribution<%1%>&)", sigma, &result, Policy())) return result; return exp(4 * ss) + 2 * exp(3 * ss) + 3 * exp(2 * ss) - 6; } } // namespace math } // namespace boost // This include must be at the end, *after* the accessors // for this distribution have been defined, in order to // keep compilers that support two-phase lookup happy. #include #endif // BOOST_STATS_STUDENTS_T_HPP