// boost\math\special_functions\negative_binomial.hpp // Copyright Paul A. Bristow 2007. // Copyright John Maddock 2007. // Use, modification and distribution are subject to the // Boost Software License, Version 1.0. // (See accompanying file LICENSE_1_0.txt // or copy at http://www.boost.org/LICENSE_1_0.txt) // http://en.wikipedia.org/wiki/negative_binomial_distribution // http://mathworld.wolfram.com/NegativeBinomialDistribution.html // http://documents.wolfram.com/teachersedition/Teacher/Statistics/DiscreteDistributions.html // The negative binomial distribution NegativeBinomialDistribution[n, p] // is the distribution of the number (k) of failures that occur in a sequence of trials before // r successes have occurred, where the probability of success in each trial is p. // In a sequence of Bernoulli trials or events // (independent, yes or no, succeed or fail) with success_fraction probability p, // negative_binomial is the probability that k or fewer failures // preceed the r th trial's success. // random variable k is the number of failures (NOT the probability). // Negative_binomial distribution is a discrete probability distribution. // But note that the negative binomial distribution // (like others including the binomial, Poisson & Bernoulli) // is strictly defined as a discrete function: only integral values of k are envisaged. // However because of the method of calculation using a continuous gamma function, // it is convenient to treat it as if a continous function, // and permit non-integral values of k. // However, by default the policy is to use discrete_quantile_policy. // To enforce the strict mathematical model, users should use conversion // on k outside this function to ensure that k is integral. // MATHCAD cumulative negative binomial pnbinom(k, n, p) // Implementation note: much greater speed, and perhaps greater accuracy, // might be achieved for extreme values by using a normal approximation. // This is NOT been tested or implemented. #ifndef BOOST_MATH_SPECIAL_NEGATIVE_BINOMIAL_HPP #define BOOST_MATH_SPECIAL_NEGATIVE_BINOMIAL_HPP #include #include // for ibeta(a, b, x) == Ix(a, b). #include // complement. #include // error checks domain_error & logic_error. #include // isnan. #include // for root finding. #include #include #include #include #include #include // using std::numeric_limits; #include #if defined (BOOST_MSVC) # pragma warning(push) // This believed not now necessary, so commented out. //# pragma warning(disable: 4702) // unreachable code. // in domain_error_imp in error_handling. #endif namespace boost { namespace math { namespace negative_binomial_detail { // Common error checking routines for negative binomial distribution functions: template inline bool check_successes(const char* function, const RealType& r, RealType* result, const Policy& pol) { if( !(boost::math::isfinite)(r) || (r <= 0) ) { *result = policies::raise_domain_error( function, "Number of successes argument is %1%, but must be > 0 !", r, pol); return false; } return true; } template inline bool check_success_fraction(const char* function, const RealType& p, RealType* result, const Policy& pol) { if( !(boost::math::isfinite)(p) || (p < 0) || (p > 1) ) { *result = policies::raise_domain_error( function, "Success fraction argument is %1%, but must be >= 0 and <= 1 !", p, pol); return false; } return true; } template inline bool check_dist(const char* function, const RealType& r, const RealType& p, RealType* result, const Policy& pol) { return check_success_fraction(function, p, result, pol) && check_successes(function, r, result, pol); } template inline bool check_dist_and_k(const char* function, const RealType& r, const RealType& p, RealType k, RealType* result, const Policy& pol) { if(check_dist(function, r, p, result, pol) == false) { return false; } if( !(boost::math::isfinite)(k) || (k < 0) ) { // Check k failures. *result = policies::raise_domain_error( function, "Number of failures argument is %1%, but must be >= 0 !", k, pol); return false; } return true; } // Check_dist_and_k template inline bool check_dist_and_prob(const char* function, const RealType& r, RealType p, RealType prob, RealType* result, const Policy& pol) { if(check_dist(function, r, p, result, pol) && detail::check_probability(function, prob, result, pol) == false) { return false; } return true; } // check_dist_and_prob } // namespace negative_binomial_detail template > class negative_binomial_distribution { public: typedef RealType value_type; typedef Policy policy_type; negative_binomial_distribution(RealType r, RealType p) : m_r(r), m_p(p) { // Constructor. RealType result; negative_binomial_detail::check_dist( "negative_binomial_distribution<%1%>::negative_binomial_distribution", m_r, // Check successes r > 0. m_p, // Check success_fraction 0 <= p <= 1. &result, Policy()); } // negative_binomial_distribution constructor. // Private data getter class member functions. RealType success_fraction() const { // Probability of success as fraction in range 0 to 1. return m_p; } RealType successes() const { // Total number of successes r. return m_r; } static RealType find_lower_bound_on_p( RealType trials, RealType successes, RealType alpha) // alpha 0.05 equivalent to 95% for one-sided test. { static const char* function = "boost::math::negative_binomial<%1%>::find_lower_bound_on_p"; RealType result; // of error checks. RealType failures = trials - successes; if(false == detail::check_probability(function, alpha, &result, Policy()) && negative_binomial_detail::check_dist_and_k( function, successes, RealType(0), failures, &result, Policy())) { return result; } // Use complement ibeta_inv function for lower bound. // This is adapted from the corresponding binomial formula // here: http://www.itl.nist.gov/div898/handbook/prc/section2/prc241.htm // This is a Clopper-Pearson interval, and may be overly conservative, // see also "A Simple Improved Inferential Method for Some // Discrete Distributions" Yong CAI and K. KRISHNAMOORTHY // http://www.ucs.louisiana.edu/~kxk4695/Discrete_new.pdf // return ibeta_inv(successes, failures + 1, alpha, static_cast(0), Policy()); } // find_lower_bound_on_p static RealType find_upper_bound_on_p( RealType trials, RealType successes, RealType alpha) // alpha 0.05 equivalent to 95% for one-sided test. { static const char* function = "boost::math::negative_binomial<%1%>::find_upper_bound_on_p"; RealType result; // of error checks. RealType failures = trials - successes; if(false == negative_binomial_detail::check_dist_and_k( function, successes, RealType(0), failures, &result, Policy()) && detail::check_probability(function, alpha, &result, Policy())) { return result; } if(failures == 0) return 1; // Use complement ibetac_inv function for upper bound. // Note adjusted failures value: *not* failures+1 as usual. // This is adapted from the corresponding binomial formula // here: http://www.itl.nist.gov/div898/handbook/prc/section2/prc241.htm // This is a Clopper-Pearson interval, and may be overly conservative, // see also "A Simple Improved Inferential Method for Some // Discrete Distributions" Yong CAI and K. KRISHNAMOORTHY // http://www.ucs.louisiana.edu/~kxk4695/Discrete_new.pdf // return ibetac_inv(successes, failures, alpha, static_cast(0), Policy()); } // find_upper_bound_on_p // Estimate number of trials : // "How many trials do I need to be P% sure of seeing k or fewer failures?" static RealType find_minimum_number_of_trials( RealType k, // number of failures (k >= 0). RealType p, // success fraction 0 <= p <= 1. RealType alpha) // risk level threshold 0 <= alpha <= 1. { static const char* function = "boost::math::negative_binomial<%1%>::find_minimum_number_of_trials"; // Error checks: RealType result; if(false == negative_binomial_detail::check_dist_and_k( function, RealType(1), p, k, &result, Policy()) && detail::check_probability(function, alpha, &result, Policy())) { return result; } result = ibeta_inva(k + 1, p, alpha, Policy()); // returns n - k return result + k; } // RealType find_number_of_failures static RealType find_maximum_number_of_trials( RealType k, // number of failures (k >= 0). RealType p, // success fraction 0 <= p <= 1. RealType alpha) // risk level threshold 0 <= alpha <= 1. { static const char* function = "boost::math::negative_binomial<%1%>::find_maximum_number_of_trials"; // Error checks: RealType result; if(false == negative_binomial_detail::check_dist_and_k( function, RealType(1), p, k, &result, Policy()) && detail::check_probability(function, alpha, &result, Policy())) { return result; } result = ibetac_inva(k + 1, p, alpha, Policy()); // returns n - k return result + k; } // RealType find_number_of_trials complemented private: RealType m_r; // successes. RealType m_p; // success_fraction }; // template class negative_binomial_distribution typedef negative_binomial_distribution negative_binomial; // Reserved name of type double. template inline const std::pair range(const negative_binomial_distribution& /* dist */) { // Range of permissible values for random variable k. using boost::math::tools::max_value; return std::pair(static_cast(0), max_value()); // max_integer? } template inline const std::pair support(const negative_binomial_distribution& /* dist */) { // Range of supported values for random variable k. // This is range where cdf rises from 0 to 1, and outside it, the pdf is zero. using boost::math::tools::max_value; return std::pair(static_cast(0), max_value()); // max_integer? } template inline RealType mean(const negative_binomial_distribution& dist) { // Mean of Negative Binomial distribution = r(1-p)/p. return dist.successes() * (1 - dist.success_fraction() ) / dist.success_fraction(); } // mean //template //inline RealType median(const negative_binomial_distribution& dist) //{ // Median of negative_binomial_distribution is not defined. // return policies::raise_domain_error(BOOST_CURRENT_FUNCTION, "Median is not implemented, result is %1%!", std::numeric_limits::quiet_NaN()); //} // median // Now implemented via quantile(half) in derived accessors. template inline RealType mode(const negative_binomial_distribution& dist) { // Mode of Negative Binomial distribution = floor[(r-1) * (1 - p)/p] BOOST_MATH_STD_USING // ADL of std functions. return floor((dist.successes() -1) * (1 - dist.success_fraction()) / dist.success_fraction()); } // mode template inline RealType skewness(const negative_binomial_distribution& dist) { // skewness of Negative Binomial distribution = 2-p / (sqrt(r(1-p)) BOOST_MATH_STD_USING // ADL of std functions. RealType p = dist.success_fraction(); RealType r = dist.successes(); return (2 - p) / sqrt(r * (1 - p)); } // skewness template inline RealType kurtosis(const negative_binomial_distribution& dist) { // kurtosis of Negative Binomial distribution // http://en.wikipedia.org/wiki/Negative_binomial is kurtosis_excess so add 3 RealType p = dist.success_fraction(); RealType r = dist.successes(); return 3 + (6 / r) + ((p * p) / (r * (1 - p))); } // kurtosis template inline RealType kurtosis_excess(const negative_binomial_distribution& dist) { // kurtosis excess of Negative Binomial distribution // http://mathworld.wolfram.com/Kurtosis.html table of kurtosis_excess RealType p = dist.success_fraction(); RealType r = dist.successes(); return (6 - p * (6-p)) / (r * (1-p)); } // kurtosis_excess template inline RealType variance(const negative_binomial_distribution& dist) { // Variance of Binomial distribution = r (1-p) / p^2. return dist.successes() * (1 - dist.success_fraction()) / (dist.success_fraction() * dist.success_fraction()); } // variance // RealType standard_deviation(const negative_binomial_distribution& dist) // standard_deviation provided by derived accessors. // RealType hazard(const negative_binomial_distribution& dist) // hazard of Negative Binomial distribution provided by derived accessors. // RealType chf(const negative_binomial_distribution& dist) // chf of Negative Binomial distribution provided by derived accessors. template inline RealType pdf(const negative_binomial_distribution& dist, const RealType& k) { // Probability Density/Mass Function. BOOST_FPU_EXCEPTION_GUARD static const char* function = "boost::math::pdf(const negative_binomial_distribution<%1%>&, %1%)"; RealType r = dist.successes(); RealType p = dist.success_fraction(); RealType result; if(false == negative_binomial_detail::check_dist_and_k( function, r, dist.success_fraction(), k, &result, Policy())) { return result; } result = (p/(r + k)) * ibeta_derivative(r, static_cast(k+1), p, Policy()); // Equivalent to: // return exp(lgamma(r + k) - lgamma(r) - lgamma(k+1)) * pow(p, r) * pow((1-p), k); return result; } // negative_binomial_pdf template inline RealType cdf(const negative_binomial_distribution& dist, const RealType& k) { // Cumulative Distribution Function of Negative Binomial. static const char* function = "boost::math::cdf(const negative_binomial_distribution<%1%>&, %1%)"; using boost::math::ibeta; // Regularized incomplete beta function. // k argument may be integral, signed, or unsigned, or floating point. // If necessary, it has already been promoted from an integral type. RealType p = dist.success_fraction(); RealType r = dist.successes(); // Error check: RealType result; if(false == negative_binomial_detail::check_dist_and_k( function, r, dist.success_fraction(), k, &result, Policy())) { return result; } RealType probability = ibeta(r, static_cast(k+1), p, Policy()); // Ip(r, k+1) = ibeta(r, k+1, p) return probability; } // cdf Cumulative Distribution Function Negative Binomial. template inline RealType cdf(const complemented2_type, RealType>& c) { // Complemented Cumulative Distribution Function Negative Binomial. static const char* function = "boost::math::cdf(const negative_binomial_distribution<%1%>&, %1%)"; using boost::math::ibetac; // Regularized incomplete beta function complement. // k argument may be integral, signed, or unsigned, or floating point. // If necessary, it has already been promoted from an integral type. RealType const& k = c.param; negative_binomial_distribution const& dist = c.dist; RealType p = dist.success_fraction(); RealType r = dist.successes(); // Error check: RealType result; if(false == negative_binomial_detail::check_dist_and_k( function, r, p, k, &result, Policy())) { return result; } // Calculate cdf negative binomial using the incomplete beta function. // Use of ibeta here prevents cancellation errors in calculating // 1-p if p is very small, perhaps smaller than machine epsilon. // Ip(k+1, r) = ibetac(r, k+1, p) // constrain_probability here? RealType probability = ibetac(r, static_cast(k+1), p, Policy()); // Numerical errors might cause probability to be slightly outside the range < 0 or > 1. // This might cause trouble downstream, so warn, possibly throw exception, but constrain to the limits. return probability; } // cdf Cumulative Distribution Function Negative Binomial. template inline RealType quantile(const negative_binomial_distribution& dist, const RealType& P) { // Quantile, percentile/100 or Percent Point Negative Binomial function. // Return the number of expected failures k for a given probability p. // Inverse cumulative Distribution Function or Quantile (percentile / 100) of negative_binomial Probability. // MAthCAD pnbinom return smallest k such that negative_binomial(k, n, p) >= probability. // k argument may be integral, signed, or unsigned, or floating point. // BUT Cephes/CodeCogs says: finds argument p (0 to 1) such that cdf(k, n, p) = y static const char* function = "boost::math::quantile(const negative_binomial_distribution<%1%>&, %1%)"; BOOST_MATH_STD_USING // ADL of std functions. RealType p = dist.success_fraction(); RealType r = dist.successes(); // Check dist and P. RealType result; if(false == negative_binomial_detail::check_dist_and_prob (function, r, p, P, &result, Policy())) { return result; } // Special cases. if (P == 1) { // Would need +infinity failures for total confidence. result = policies::raise_overflow_error( function, "Probability argument is 1, which implies infinite failures !", Policy()); return result; // usually means return +std::numeric_limits::infinity(); // unless #define BOOST_MATH_THROW_ON_OVERFLOW_ERROR } if (P == 0) { // No failures are expected if P = 0. return 0; // Total trials will be just dist.successes. } if (P <= pow(dist.success_fraction(), dist.successes())) { // p <= pdf(dist, 0) == cdf(dist, 0) return 0; } /* // Calculate quantile of negative_binomial using the inverse incomplete beta function. using boost::math::ibeta_invb; return ibeta_invb(r, p, P, Policy()) - 1; // */ RealType guess = 0; RealType factor = 5; if(r * r * r * P * p > 0.005) guess = detail::inverse_negative_binomial_cornish_fisher(r, p, RealType(1-p), P, RealType(1-P), Policy()); if(guess < 10) { // // Cornish-Fisher Negative binomial approximation not accurate in this area: // guess = (std::min)(RealType(r * 2), RealType(10)); } else factor = (1-P < sqrt(tools::epsilon())) ? 2 : (guess < 20 ? 1.2f : 1.1f); BOOST_MATH_INSTRUMENT_CODE("guess = " << guess); // // Max iterations permitted: // boost::uintmax_t max_iter = policies::get_max_root_iterations(); typedef typename Policy::discrete_quantile_type discrete_type; return detail::inverse_discrete_quantile( dist, P, 1-P, guess, factor, RealType(1), discrete_type(), max_iter); } // RealType quantile(const negative_binomial_distribution dist, p) template inline RealType quantile(const complemented2_type, RealType>& c) { // Quantile or Percent Point Binomial function. // Return the number of expected failures k for a given // complement of the probability Q = 1 - P. static const char* function = "boost::math::quantile(const negative_binomial_distribution<%1%>&, %1%)"; BOOST_MATH_STD_USING // Error checks: RealType Q = c.param; const negative_binomial_distribution& dist = c.dist; RealType p = dist.success_fraction(); RealType r = dist.successes(); RealType result; if(false == negative_binomial_detail::check_dist_and_prob( function, r, p, Q, &result, Policy())) { return result; } // Special cases: // if(Q == 1) { // There may actually be no answer to this question, // since the probability of zero failures may be non-zero, return 0; // but zero is the best we can do: } if (-Q <= boost::math::powm1(dist.success_fraction(), dist.successes(), Policy())) { // q <= cdf(complement(dist, 0)) == pdf(dist, 0) return 0; // } if(Q == 0) { // Probability 1 - Q == 1 so infinite failures to achieve certainty. // Would need +infinity failures for total confidence. result = policies::raise_overflow_error( function, "Probability argument complement is 0, which implies infinite failures !", Policy()); return result; // usually means return +std::numeric_limits::infinity(); // unless #define BOOST_MATH_THROW_ON_OVERFLOW_ERROR } //return ibetac_invb(r, p, Q, Policy()) -1; RealType guess = 0; RealType factor = 5; if(r * r * r * (1-Q) * p > 0.005) guess = detail::inverse_negative_binomial_cornish_fisher(r, p, RealType(1-p), RealType(1-Q), Q, Policy()); if(guess < 10) { // // Cornish-Fisher Negative binomial approximation not accurate in this area: // guess = (std::min)(RealType(r * 2), RealType(10)); } else factor = (Q < sqrt(tools::epsilon())) ? 2 : (guess < 20 ? 1.2f : 1.1f); BOOST_MATH_INSTRUMENT_CODE("guess = " << guess); // // Max iterations permitted: // boost::uintmax_t max_iter = policies::get_max_root_iterations(); typedef typename Policy::discrete_quantile_type discrete_type; return detail::inverse_discrete_quantile( dist, 1-Q, Q, guess, factor, RealType(1), discrete_type(), max_iter); } // quantile complement } // namespace math } // namespace boost // This include must be at the end, *after* the accessors // for this distribution have been defined, in order to // keep compilers that support two-phase lookup happy. #include #if defined (BOOST_MSVC) # pragma warning(pop) #endif #endif // BOOST_MATH_SPECIAL_NEGATIVE_BINOMIAL_HPP