///////////////////////////////////////////////////////////////////////////////
// expr.hpp
// Contains definition of expr\<\> class template.
//
// Copyright 2008 Eric Niebler. Distributed under the Boost
// Software License, Version 1.0. (See accompanying file
// LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
#ifndef BOOST_PP_IS_ITERATING
#error Do not include this file directly
#endif
#define ARG_COUNT BOOST_PP_MAX(1, BOOST_PP_ITERATION())
/// \brief Simplified representation of a node in an expression tree.
///
/// \c proto::basic_expr\<\> is a node in an expression template tree. It
/// is a container for its child sub-trees. It also serves as
/// the terminal nodes of the tree.
///
/// \c Tag is type that represents the operation encoded by
/// this expression. It is typically one of the structs
/// in the \c boost::proto::tag namespace, but it doesn't
/// have to be.
///
/// \c Args is a type list representing the type of the children
/// of this expression. It is an instantiation of one
/// of \c proto::list1\<\>, \c proto::list2\<\>, etc. The
/// child types must all themselves be either \c expr\<\>
/// or proto::expr\<\>&. If \c Args is an
/// instantiation of \c proto::term\<\> then this
/// \c expr\<\> type represents a terminal expression;
/// the parameter to the \c proto::term\<\> template
/// represents the terminal's value type.
///
/// \c Arity is an integral constant representing the number of child
/// nodes this node contains. If \c Arity is 0, then this
/// node is a terminal.
///
/// \c proto::basic_expr\<\> is a valid Fusion random-access sequence, where
/// the elements of the sequence are the child expressions.
#ifdef BOOST_PROTO_DEFINE_TERMINAL
template
struct basic_expr, 0>
#else
template
struct basic_expr, BOOST_PP_ITERATION() >
#endif
{
typedef Tag proto_tag;
BOOST_STATIC_CONSTANT(long, proto_arity_c = BOOST_PP_ITERATION());
typedef mpl::long_ proto_arity;
typedef basic_expr proto_base_expr;
#ifdef BOOST_PROTO_DEFINE_TERMINAL
typedef term proto_args;
#else
typedef BOOST_PP_CAT(list, BOOST_PP_ITERATION()) proto_args;
#endif
typedef basic_expr proto_grammar;
typedef default_domain proto_domain;
typedef default_generator proto_generator;
typedef proto::tag::proto_expr fusion_tag;
typedef basic_expr proto_derived_expr;
typedef void proto_is_expr_; /**< INTERNAL ONLY */
BOOST_PP_REPEAT(ARG_COUNT, BOOST_PROTO_CHILD, ~)
BOOST_PP_REPEAT_FROM_TO(ARG_COUNT, BOOST_PROTO_MAX_ARITY, BOOST_PROTO_VOID, ~)
/// \return *this
///
basic_expr const &proto_base() const
{
return *this;
}
/// \overload
///
basic_expr &proto_base()
{
return *this;
}
#ifdef BOOST_PROTO_DEFINE_TERMINAL
/// \return A new \c expr\<\> object initialized with the specified
/// arguments.
///
template
static basic_expr const make(A0 &a0)
{
return detail::make_terminal(a0, static_cast(0), static_cast(0));
}
/// \overload
///
template
static basic_expr const make(A0 const &a0)
{
return detail::make_terminal(a0, static_cast(0), static_cast(0));
}
#else
/// \return A new \c expr\<\> object initialized with the specified
/// arguments.
///
template
static basic_expr const make(BOOST_PP_ENUM_BINARY_PARAMS(ARG_COUNT, A, const &a))
{
basic_expr that = {BOOST_PP_ENUM_PARAMS(ARG_COUNT, a)};
return that;
}
#endif
#if 1 == BOOST_PP_ITERATION()
/// If \c Tag is \c boost::proto::tag::address_of and \c proto_child0 is
/// T&, then \c address_of_hack_type_ is T*.
/// Otherwise, it is some undefined type.
typedef typename detail::address_of_hack::type address_of_hack_type_;
/// \return The address of this->child0 if \c Tag is
/// \c boost::proto::tag::address_of. Otherwise, this function will
/// fail to compile.
///
/// \attention Proto overloads operator&, which means that
/// proto-ified objects cannot have their addresses taken, unless we use
/// the following hack to make \c &x implicitly convertible to \c X*.
operator address_of_hack_type_() const
{
return boost::addressof(this->child0);
}
#else
/// INTERNAL ONLY
///
typedef detail::not_a_valid_type address_of_hack_type_;
#endif
};
/// \brief Representation of a node in an expression tree.
///
/// \c proto::expr\<\> is a node in an expression template tree. It
/// is a container for its child sub-trees. It also serves as
/// the terminal nodes of the tree.
///
/// \c Tag is type that represents the operation encoded by
/// this expression. It is typically one of the structs
/// in the \c boost::proto::tag namespace, but it doesn't
/// have to be.
///
/// \c Args is a type list representing the type of the children
/// of this expression. It is an instantiation of one
/// of \c proto::list1\<\>, \c proto::list2\<\>, etc. The
/// child types must all themselves be either \c expr\<\>
/// or proto::expr\<\>&. If \c Args is an
/// instantiation of \c proto::term\<\> then this
/// \c expr\<\> type represents a terminal expression;
/// the parameter to the \c proto::term\<\> template
/// represents the terminal's value type.
///
/// \c Arity is an integral constant representing the number of child
/// nodes this node contains. If \c Arity is 0, then this
/// node is a terminal.
///
/// \c proto::expr\<\> is a valid Fusion random-access sequence, where
/// the elements of the sequence are the child expressions.
#ifdef BOOST_PROTO_DEFINE_TERMINAL
template
struct expr, 0>
#else
template
struct expr, BOOST_PP_ITERATION() >
#endif
{
typedef Tag proto_tag;
BOOST_STATIC_CONSTANT(long, proto_arity_c = BOOST_PP_ITERATION());
typedef mpl::long_ proto_arity;
typedef expr proto_base_expr;
#ifdef BOOST_PROTO_DEFINE_TERMINAL
typedef term proto_args;
#else
typedef BOOST_PP_CAT(list, BOOST_PP_ITERATION()) proto_args;
#endif
typedef basic_expr proto_grammar;
typedef default_domain proto_domain;
typedef default_generator proto_generator;
typedef proto::tag::proto_expr fusion_tag;
typedef expr proto_derived_expr;
typedef void proto_is_expr_; /**< INTERNAL ONLY */
BOOST_PP_REPEAT(ARG_COUNT, BOOST_PROTO_CHILD, ~)
BOOST_PP_REPEAT_FROM_TO(ARG_COUNT, BOOST_PROTO_MAX_ARITY, BOOST_PROTO_VOID, ~)
/// \return *this
///
expr const &proto_base() const
{
return *this;
}
/// \overload
///
expr &proto_base()
{
return *this;
}
#ifdef BOOST_PROTO_DEFINE_TERMINAL
/// \return A new \c expr\<\> object initialized with the specified
/// arguments.
///
template
static expr const make(A0 &a0)
{
return detail::make_terminal(a0, static_cast(0), static_cast(0));
}
/// \overload
///
template
static expr const make(A0 const &a0)
{
return detail::make_terminal(a0, static_cast(0), static_cast(0));
}
#else
/// \return A new \c expr\<\> object initialized with the specified
/// arguments.
///
template
static expr const make(BOOST_PP_ENUM_BINARY_PARAMS(ARG_COUNT, A, const &a))
{
expr that = {BOOST_PP_ENUM_PARAMS(ARG_COUNT, a)};
return that;
}
#endif
#if 1 == BOOST_PP_ITERATION()
/// If \c Tag is \c boost::proto::tag::address_of and \c proto_child0 is
/// T&, then \c address_of_hack_type_ is T*.
/// Otherwise, it is some undefined type.
typedef typename detail::address_of_hack::type address_of_hack_type_;
/// \return The address of this->child0 if \c Tag is
/// \c boost::proto::tag::address_of. Otherwise, this function will
/// fail to compile.
///
/// \attention Proto overloads operator&, which means that
/// proto-ified objects cannot have their addresses taken, unless we use
/// the following hack to make \c &x implicitly convertible to \c X*.
operator address_of_hack_type_() const
{
return boost::addressof(this->child0);
}
#else
/// INTERNAL ONLY
///
typedef detail::not_a_valid_type address_of_hack_type_;
#endif
/// Assignment
///
/// \param a The rhs.
/// \return A new \c expr\<\> node representing an assignment of \c that to \c *this.
proto::expr<
proto::tag::assign
, list2
, 2
> const
operator =(expr const &a)
{
proto::expr<
proto::tag::assign
, list2
, 2
> that = {*this, a};
return that;
}
/// Assignment
///
/// \param a The rhs.
/// \return A new \c expr\<\> node representing an assignment of \c a to \c *this.
template
proto::expr<
proto::tag::assign
, list2::type>
, 2
> const
operator =(A &a) const
{
proto::expr<
proto::tag::assign
, list2::type>
, 2
> that = {*this, proto::as_child(a)};
return that;
}
/// \overload
///
template
proto::expr<
proto::tag::assign
, list2::type>
, 2
> const
operator =(A const &a) const
{
proto::expr<
proto::tag::assign
, list2::type>
, 2
> that = {*this, proto::as_child(a)};
return that;
}
#ifdef BOOST_PROTO_DEFINE_TERMINAL
/// \overload
///
template
proto::expr<
proto::tag::assign
, list2::type>
, 2
> const
operator =(A &a)
{
proto::expr<
proto::tag::assign
, list2::type>
, 2
> that = {*this, proto::as_child(a)};
return that;
}
/// \overload
///
template
proto::expr<
proto::tag::assign
, list2::type>
, 2
> const
operator =(A const &a)
{
proto::expr<
proto::tag::assign
, list2::type>
, 2
> that = {*this, proto::as_child(a)};
return that;
}
#endif
/// Subscript
///
/// \param a The rhs.
/// \return A new \c expr\<\> node representing \c *this subscripted with \c a.
template
proto::expr<
proto::tag::subscript
, list2::type>
, 2
> const
operator [](A &a) const
{
proto::expr<
proto::tag::subscript
, list2::type>
, 2
> that = {*this, proto::as_child(a)};
return that;
}
/// \overload
///
template
proto::expr<
proto::tag::subscript
, list2::type>
, 2
> const
operator [](A const &a) const
{
proto::expr<
proto::tag::subscript
, list2::type>
, 2
> that = {*this, proto::as_child(a)};
return that;
}
#ifdef BOOST_PROTO_DEFINE_TERMINAL
/// \overload
///
template
proto::expr<
proto::tag::subscript
, list2::type>
, 2
> const
operator [](A &a)
{
proto::expr<
proto::tag::subscript
, list2::type>
, 2
> that = {*this, proto::as_child(a)};
return that;
}
/// \overload
///
template
proto::expr<
proto::tag::subscript
, list2::type>
, 2
> const
operator [](A const &a)
{
proto::expr<
proto::tag::subscript
, list2::type>
, 2
> that = {*this, proto::as_child(a)};
return that;
}
#endif
/// Encodes the return type of \c expr\<\>::operator(), for use with \c boost::result_of\<\>
///
template
struct result
{
typedef typename result_of::funop::type const type;
};
/// Function call
///
/// \return A new \c expr\<\> node representing the function invocation of \c (*this)().
proto::expr, 1> const
operator ()() const
{
proto::expr, 1> that = {*this};
return that;
}
#ifdef BOOST_PROTO_DEFINE_TERMINAL
/// \overload
///
proto::expr, 1> const
operator ()()
{
proto::expr, 1> that = {*this};
return that;
}
#endif
#define BOOST_PP_ITERATION_PARAMS_2 (3, (1, BOOST_PP_DEC(BOOST_PROTO_MAX_FUNCTION_CALL_ARITY), ))
#include BOOST_PP_ITERATE()
};
#undef ARG_COUNT