//////////////////////////////////////////////////////////////////////////////// // // (C) Copyright Ion Gaztanaga 2005-2012. Distributed under the Boost // Software License, Version 1.0. (See accompanying file // LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt) // // See http://www.boost.org/libs/container for documentation. // //////////////////////////////////////////////////////////////////////////////// #ifndef BOOST_CONTAINER_FLAT_TREE_HPP #define BOOST_CONTAINER_FLAT_TREE_HPP #if (defined _MSC_VER) && (_MSC_VER >= 1200) # pragma once #endif #include "config_begin.hpp" #include #include #include #include #include #include #include #include #include #include #include #include #include #include namespace boost { namespace container { namespace container_detail { template class flat_tree_value_compare : private Compare { typedef Value first_argument_type; typedef Value second_argument_type; typedef bool return_type; public: flat_tree_value_compare() : Compare() {} flat_tree_value_compare(const Compare &pred) : Compare(pred) {} bool operator()(const Value& lhs, const Value& rhs) const { KeyOfValue key_extract; return Compare::operator()(key_extract(lhs), key_extract(rhs)); } const Compare &get_comp() const { return *this; } Compare &get_comp() { return *this; } }; template struct get_flat_tree_iterators { typedef typename container_detail:: vector_iterator iterator; typedef typename container_detail:: vector_const_iterator const_iterator; typedef std::reverse_iterator reverse_iterator; typedef std::reverse_iterator const_reverse_iterator; }; template class flat_tree { typedef boost::container::vector vector_t; typedef A allocator_t; public: typedef flat_tree_value_compare value_compare; private: struct Data //Inherit from value_compare to do EBO : public value_compare { BOOST_COPYABLE_AND_MOVABLE(Data) public: Data() : value_compare(), m_vect() {} Data(const Data &d) : value_compare(static_cast(d)), m_vect(d.m_vect) {} Data(BOOST_RV_REF(Data) d) : value_compare(boost::move(static_cast(d))), m_vect(boost::move(d.m_vect)) {} Data(const Data &d, const A &a) : value_compare(static_cast(d)), m_vect(d.m_vect, a) {} Data(BOOST_RV_REF(Data) d, const A &a) : value_compare(boost::move(static_cast(d))), m_vect(boost::move(d.m_vect), a) {} Data(const Compare &comp) : value_compare(comp), m_vect() {} Data(const Compare &comp, const allocator_t &alloc) : value_compare(comp), m_vect(alloc) {} Data& operator=(BOOST_COPY_ASSIGN_REF(Data) d) { this->value_compare::operator=(d); m_vect = d.m_vect; return *this; } Data& operator=(BOOST_RV_REF(Data) d) { this->value_compare::operator=(boost::move(static_cast(d))); m_vect = boost::move(d.m_vect); return *this; } void swap(Data &d) { value_compare& mycomp = *this, & othercomp = d; container_detail::do_swap(mycomp, othercomp); this->m_vect.swap(d.m_vect); } vector_t m_vect; }; Data m_data; BOOST_COPYABLE_AND_MOVABLE(flat_tree) public: typedef typename vector_t::value_type value_type; typedef typename vector_t::pointer pointer; typedef typename vector_t::const_pointer const_pointer; typedef typename vector_t::reference reference; typedef typename vector_t::const_reference const_reference; typedef Key key_type; typedef Compare key_compare; typedef typename vector_t::allocator_type allocator_type; typedef typename vector_t::size_type size_type; typedef typename vector_t::difference_type difference_type; typedef typename vector_t::iterator iterator; typedef typename vector_t::const_iterator const_iterator; typedef typename vector_t::reverse_iterator reverse_iterator; typedef typename vector_t::const_reverse_iterator const_reverse_iterator; //!Standard extension typedef allocator_type stored_allocator_type; private: typedef allocator_traits stored_allocator_traits; public: flat_tree() : m_data() { } explicit flat_tree(const Compare& comp) : m_data(comp) { } flat_tree(const Compare& comp, const allocator_type& a) : m_data(comp, a) { } flat_tree(const flat_tree& x) : m_data(x.m_data) { } flat_tree(BOOST_RV_REF(flat_tree) x) : m_data(boost::move(x.m_data)) { } flat_tree(const flat_tree& x, const allocator_type &a) : m_data(x.m_data, a) { } flat_tree(BOOST_RV_REF(flat_tree) x, const allocator_type &a) : m_data(boost::move(x.m_data), a) { } template flat_tree( ordered_range_t, InputIterator first, InputIterator last , const Compare& comp = Compare() , const allocator_type& a = allocator_type()) : m_data(comp, a) { this->m_data.m_vect.insert(this->m_data.m_vect.end(), first, last); } ~flat_tree() { } flat_tree& operator=(BOOST_COPY_ASSIGN_REF(flat_tree) x) { m_data = x.m_data; return *this; } flat_tree& operator=(BOOST_RV_REF(flat_tree) mx) { m_data = boost::move(mx.m_data); return *this; } public: // accessors: Compare key_comp() const { return this->m_data.get_comp(); } allocator_type get_allocator() const { return this->m_data.m_vect.get_allocator(); } const stored_allocator_type &get_stored_allocator() const { return this->m_data.m_vect.get_stored_allocator(); } stored_allocator_type &get_stored_allocator() { return this->m_data.m_vect.get_stored_allocator(); } iterator begin() { return this->m_data.m_vect.begin(); } const_iterator begin() const { return this->cbegin(); } const_iterator cbegin() const { return this->m_data.m_vect.begin(); } iterator end() { return this->m_data.m_vect.end(); } const_iterator end() const { return this->cend(); } const_iterator cend() const { return this->m_data.m_vect.end(); } reverse_iterator rbegin() { return reverse_iterator(this->end()); } const_reverse_iterator rbegin() const { return this->crbegin(); } const_reverse_iterator crbegin() const { return const_reverse_iterator(this->cend()); } reverse_iterator rend() { return reverse_iterator(this->begin()); } const_reverse_iterator rend() const { return this->crend(); } const_reverse_iterator crend() const { return const_reverse_iterator(this->cbegin()); } bool empty() const { return this->m_data.m_vect.empty(); } size_type size() const { return this->m_data.m_vect.size(); } size_type max_size() const { return this->m_data.m_vect.max_size(); } void swap(flat_tree& other) { this->m_data.swap(other.m_data); } public: // insert/erase std::pair insert_unique(const value_type& val) { insert_commit_data data; std::pair ret = priv_insert_unique_prepare(val, data); if(ret.second){ ret.first = priv_insert_commit(data, val); } return ret; } std::pair insert_unique(BOOST_RV_REF(value_type) val) { insert_commit_data data; std::pair ret = priv_insert_unique_prepare(val, data); if(ret.second){ ret.first = priv_insert_commit(data, boost::move(val)); } return ret; } iterator insert_equal(const value_type& val) { iterator i = this->upper_bound(KeyOfValue()(val)); i = this->m_data.m_vect.insert(i, val); return i; } iterator insert_equal(BOOST_RV_REF(value_type) mval) { iterator i = this->upper_bound(KeyOfValue()(mval)); i = this->m_data.m_vect.insert(i, boost::move(mval)); return i; } iterator insert_unique(const_iterator pos, const value_type& val) { insert_commit_data data; std::pair ret = priv_insert_unique_prepare(pos, val, data); if(ret.second){ ret.first = priv_insert_commit(data, val); } return ret.first; } iterator insert_unique(const_iterator pos, BOOST_RV_REF(value_type) mval) { insert_commit_data data; std::pair ret = priv_insert_unique_prepare(pos, mval, data); if(ret.second){ ret.first = priv_insert_commit(data, boost::move(mval)); } return ret.first; } iterator insert_equal(const_iterator pos, const value_type& val) { insert_commit_data data; this->priv_insert_equal_prepare(pos, val, data); return priv_insert_commit(data, val); } iterator insert_equal(const_iterator pos, BOOST_RV_REF(value_type) mval) { insert_commit_data data; this->priv_insert_equal_prepare(pos, mval, data); return priv_insert_commit(data, boost::move(mval)); } template void insert_unique(InIt first, InIt last) { for ( ; first != last; ++first) this->insert_unique(*first); } template void insert_equal(InIt first, InIt last) { typedef typename std::iterator_traits::iterator_category ItCat; this->priv_insert_equal(first, last, ItCat()); } template void insert_equal(ordered_range_t, InIt first, InIt last) { typedef typename std::iterator_traits::iterator_category ItCat; this->priv_insert_equal(ordered_range_t(), first, last, ItCat()); } template void insert_unique(ordered_unique_range_t, InIt first, InIt last) { typedef typename std::iterator_traits::iterator_category ItCat; this->priv_insert_unique(ordered_unique_range_t(), first, last, ItCat()); } #ifdef BOOST_CONTAINER_PERFECT_FORWARDING template std::pair emplace_unique(Args&&... args) { aligned_storage::value> v; value_type &val = *static_cast(static_cast(&v)); stored_allocator_type &a = this->get_stored_allocator(); stored_allocator_traits::construct(a, &val, ::boost::forward(args)... ); value_destructor d(a, val); insert_commit_data data; std::pair ret = priv_insert_unique_prepare(val, data); if(ret.second){ ret.first = priv_insert_commit(data, boost::move(val)); } return ret; } template iterator emplace_hint_unique(const_iterator hint, Args&&... args) { aligned_storage::value> v; value_type &val = *static_cast(static_cast(&v)); stored_allocator_type &a = this->get_stored_allocator(); stored_allocator_traits::construct(a, &val, ::boost::forward(args)... ); value_destructor d(a, val); insert_commit_data data; std::pair ret = priv_insert_unique_prepare(hint, val, data); if(ret.second){ ret.first = priv_insert_commit(data, boost::move(val)); } return ret.first; } template iterator emplace_equal(Args&&... args) { aligned_storage::value> v; value_type &val = *static_cast(static_cast(&v)); stored_allocator_type &a = this->get_stored_allocator(); stored_allocator_traits::construct(a, &val, ::boost::forward(args)... ); value_destructor d(a, val); iterator i = this->upper_bound(KeyOfValue()(val)); i = this->m_data.m_vect.insert(i, boost::move(val)); return i; } template iterator emplace_hint_equal(const_iterator hint, Args&&... args) { aligned_storage::value> v; value_type &val = *static_cast(static_cast(&v)); stored_allocator_type &a = this->get_stored_allocator(); stored_allocator_traits::construct(a, &val, ::boost::forward(args)... ); value_destructor d(a, val); insert_commit_data data; this->priv_insert_equal_prepare(hint, val, data); iterator i = priv_insert_commit(data, boost::move(val)); return i; } #else //#ifdef BOOST_CONTAINER_PERFECT_FORWARDING #define BOOST_PP_LOCAL_MACRO(n) \ BOOST_PP_EXPR_IF(n, template<) BOOST_PP_ENUM_PARAMS(n, class P) BOOST_PP_EXPR_IF(n, >) \ std::pair \ emplace_unique(BOOST_PP_ENUM(n, BOOST_CONTAINER_PP_PARAM_LIST, _)) \ { \ aligned_storage::value> v; \ value_type &val = *static_cast(static_cast(&v)); \ stored_allocator_type &a = this->get_stored_allocator(); \ stored_allocator_traits::construct(a, &val \ BOOST_PP_ENUM_TRAILING(n, BOOST_CONTAINER_PP_PARAM_FORWARD, _) ); \ value_destructor d(a, val); \ insert_commit_data data; \ std::pair ret = priv_insert_unique_prepare(val, data); \ if(ret.second){ \ ret.first = priv_insert_commit(data, boost::move(val)); \ } \ return ret; \ } \ \ BOOST_PP_EXPR_IF(n, template<) BOOST_PP_ENUM_PARAMS(n, class P) BOOST_PP_EXPR_IF(n, >) \ iterator emplace_hint_unique(const_iterator hint \ BOOST_PP_ENUM_TRAILING(n, BOOST_CONTAINER_PP_PARAM_LIST, _)) \ { \ aligned_storage::value> v; \ value_type &val = *static_cast(static_cast(&v)); \ stored_allocator_type &a = this->get_stored_allocator(); \ stored_allocator_traits::construct(a, &val \ BOOST_PP_ENUM_TRAILING(n, BOOST_CONTAINER_PP_PARAM_FORWARD, _) ); \ value_destructor d(a, val); \ insert_commit_data data; \ std::pair ret = priv_insert_unique_prepare(hint, val, data); \ if(ret.second){ \ ret.first = priv_insert_commit(data, boost::move(val)); \ } \ return ret.first; \ } \ \ BOOST_PP_EXPR_IF(n, template<) BOOST_PP_ENUM_PARAMS(n, class P) BOOST_PP_EXPR_IF(n, >) \ iterator emplace_equal(BOOST_PP_ENUM(n, BOOST_CONTAINER_PP_PARAM_LIST, _)) \ { \ aligned_storage::value> v; \ value_type &val = *static_cast(static_cast(&v)); \ stored_allocator_type &a = this->get_stored_allocator(); \ stored_allocator_traits::construct(a, &val \ BOOST_PP_ENUM_TRAILING(n, BOOST_CONTAINER_PP_PARAM_FORWARD, _) ); \ value_destructor d(a, val); \ iterator i = this->upper_bound(KeyOfValue()(val)); \ i = this->m_data.m_vect.insert(i, boost::move(val)); \ return i; \ } \ \ BOOST_PP_EXPR_IF(n, template<) BOOST_PP_ENUM_PARAMS(n, class P) BOOST_PP_EXPR_IF(n, >) \ iterator emplace_hint_equal(const_iterator hint \ BOOST_PP_ENUM_TRAILING(n, BOOST_CONTAINER_PP_PARAM_LIST, _)) \ { \ aligned_storage::value> v; \ value_type &val = *static_cast(static_cast(&v)); \ stored_allocator_type &a = this->get_stored_allocator(); \ stored_allocator_traits::construct(a, &val \ BOOST_PP_ENUM_TRAILING(n, BOOST_CONTAINER_PP_PARAM_FORWARD, _) ); \ value_destructor d(a, val); \ insert_commit_data data; \ this->priv_insert_equal_prepare(hint, val, data); \ iterator i = priv_insert_commit(data, boost::move(val)); \ return i; \ } \ //! #define BOOST_PP_LOCAL_LIMITS (0, BOOST_CONTAINER_MAX_CONSTRUCTOR_PARAMETERS) #include BOOST_PP_LOCAL_ITERATE() #endif //#ifdef BOOST_CONTAINER_PERFECT_FORWARDING iterator erase(const_iterator position) { return this->m_data.m_vect.erase(position); } size_type erase(const key_type& k) { std::pair itp = this->equal_range(k); size_type ret = static_cast(itp.second-itp.first); if (ret){ this->m_data.m_vect.erase(itp.first, itp.second); } return ret; } iterator erase(const_iterator first, const_iterator last) { return this->m_data.m_vect.erase(first, last); } void clear() { this->m_data.m_vect.clear(); } //! Effects: Tries to deallocate the excess of memory created // with previous allocations. The size of the vector is unchanged //! //! Throws: If memory allocation throws, or T's copy constructor throws. //! //! Complexity: Linear to size(). void shrink_to_fit() { this->m_data.m_vect.shrink_to_fit(); } // set operations: iterator find(const key_type& k) { const Compare &key_comp = this->m_data.get_comp(); iterator i = this->lower_bound(k); if (i != this->end() && key_comp(k, KeyOfValue()(*i))){ i = this->end(); } return i; } const_iterator find(const key_type& k) const { const Compare &key_comp = this->m_data.get_comp(); const_iterator i = this->lower_bound(k); if (i != this->end() && key_comp(k, KeyOfValue()(*i))){ i = this->end(); } return i; } size_type count(const key_type& k) const { std::pair p = this->equal_range(k); size_type n = p.second - p.first; return n; } iterator lower_bound(const key_type& k) { return this->priv_lower_bound(this->begin(), this->end(), k); } const_iterator lower_bound(const key_type& k) const { return this->priv_lower_bound(this->begin(), this->end(), k); } iterator upper_bound(const key_type& k) { return this->priv_upper_bound(this->begin(), this->end(), k); } const_iterator upper_bound(const key_type& k) const { return this->priv_upper_bound(this->begin(), this->end(), k); } std::pair equal_range(const key_type& k) { return this->priv_equal_range(this->begin(), this->end(), k); } std::pair equal_range(const key_type& k) const { return this->priv_equal_range(this->begin(), this->end(), k); } size_type capacity() const { return this->m_data.m_vect.capacity(); } void reserve(size_type count) { this->m_data.m_vect.reserve(count); } private: struct insert_commit_data { const_iterator position; }; // insert/erase void priv_insert_equal_prepare (const_iterator pos, const value_type& val, insert_commit_data &data) { // N1780 // To insert val at pos: // if pos == end || val <= *pos // if pos == begin || val >= *(pos-1) // insert val before pos // else // insert val before upper_bound(val) // else // insert val before lower_bound(val) const value_compare &value_comp = this->m_data; if(pos == this->cend() || !value_comp(*pos, val)){ if (pos == this->cbegin() || !value_comp(val, pos[-1])){ data.position = pos; } else{ data.position = this->priv_upper_bound(this->cbegin(), pos, KeyOfValue()(val)); } } else{ data.position = this->priv_lower_bound(pos, this->cend(), KeyOfValue()(val)); } } std::pair priv_insert_unique_prepare (const_iterator beg, const_iterator end, const value_type& val, insert_commit_data &commit_data) { const value_compare &value_comp = this->m_data; commit_data.position = this->priv_lower_bound(beg, end, KeyOfValue()(val)); return std::pair ( *reinterpret_cast(&commit_data.position) , commit_data.position == end || value_comp(val, *commit_data.position)); } std::pair priv_insert_unique_prepare (const value_type& val, insert_commit_data &commit_data) { return priv_insert_unique_prepare(this->begin(), this->end(), val, commit_data); } std::pair priv_insert_unique_prepare (const_iterator pos, const value_type& val, insert_commit_data &commit_data) { //N1780. Props to Howard Hinnant! //To insert val at pos: //if pos == end || val <= *pos // if pos == begin || val >= *(pos-1) // insert val before pos // else // insert val before upper_bound(val) //else if pos+1 == end || val <= *(pos+1) // insert val after pos //else // insert val before lower_bound(val) const value_compare &value_comp = this->m_data; if(pos == this->cend() || value_comp(val, *pos)){ if(pos != this->cbegin() && !value_comp(val, pos[-1])){ if(value_comp(pos[-1], val)){ commit_data.position = pos; return std::pair(*reinterpret_cast(&pos), true); } else{ return std::pair(*reinterpret_cast(&pos), false); } } return this->priv_insert_unique_prepare(this->cbegin(), pos, val, commit_data); } // Works, but increases code complexity //Next check //else if (value_comp(*pos, val) && !value_comp(pos[1], val)){ // if(value_comp(val, pos[1])){ // commit_data.position = pos+1; // return std::pair(pos+1, true); // } // else{ // return std::pair(pos+1, false); // } //} else{ //[... pos ... val ... ] //The hint is before the insertion position, so insert it //in the remaining range return this->priv_insert_unique_prepare(pos, this->end(), val, commit_data); } } template iterator priv_insert_commit (insert_commit_data &commit_data, BOOST_FWD_REF(Convertible) convertible) { return this->m_data.m_vect.insert ( commit_data.position , boost::forward(convertible)); } template RanIt priv_lower_bound(RanIt first, RanIt last, const key_type & key) const { const Compare &key_comp = this->m_data.get_comp(); KeyOfValue key_extract; difference_type len = last - first, half; RanIt middle; while (len > 0) { half = len >> 1; middle = first; middle += half; if (key_comp(key_extract(*middle), key)) { ++middle; first = middle; len = len - half - 1; } else len = half; } return first; } template RanIt priv_upper_bound(RanIt first, RanIt last, const key_type & key) const { const Compare &key_comp = this->m_data.get_comp(); KeyOfValue key_extract; difference_type len = last - first, half; RanIt middle; while (len > 0) { half = len >> 1; middle = first; middle += half; if (key_comp(key, key_extract(*middle))) { len = half; } else{ first = ++middle; len = len - half - 1; } } return first; } template std::pair priv_equal_range(RanIt first, RanIt last, const key_type& key) const { const Compare &key_comp = this->m_data.get_comp(); KeyOfValue key_extract; difference_type len = last - first, half; RanIt middle, left, right; while (len > 0) { half = len >> 1; middle = first; middle += half; if (key_comp(key_extract(*middle), key)){ first = middle; ++first; len = len - half - 1; } else if (key_comp(key, key_extract(*middle))){ len = half; } else { left = this->priv_lower_bound(first, middle, key); first += len; right = this->priv_upper_bound(++middle, first, key); return std::pair(left, right); } } return std::pair(first, first); } template void priv_insert_equal(ordered_range_t, BidirIt first, BidirIt last, std::bidirectional_iterator_tag) { size_type len = static_cast(std::distance(first, last)); const size_type BurstSize = 16; size_type positions[BurstSize]; //Prereserve all memory so that iterators are not invalidated this->reserve(this->size()+len); const const_iterator beg(this->cbegin()); const_iterator pos(beg); //Loop in burst sizes while(len){ const size_type burst = len < BurstSize ? len : BurstSize; const const_iterator cend(this->cend()); len -= burst; for(size_type i = 0; i != burst; ++i){ //Get the insertion position for each key pos = const_cast(*this).priv_upper_bound(pos, cend, KeyOfValue()(*first)); positions[i] = static_cast(pos - beg); ++first; } //Insert all in a single step in the precalculated positions this->m_data.m_vect.insert_ordered_at(burst, positions + burst, first); //Next search position updated pos += burst; } } template void priv_insert_unique(ordered_unique_range_t, BidirIt first, BidirIt last, std::bidirectional_iterator_tag) { size_type len = static_cast(std::distance(first, last)); const size_type BurstSize = 16; size_type positions[BurstSize]; size_type skips[BurstSize]; //Prereserve all memory so that iterators are not invalidated this->reserve(this->size()+len); const const_iterator beg(this->cbegin()); const_iterator pos(beg); const value_compare &value_comp = this->m_data; //Loop in burst sizes while(len){ skips[0u] = 0u; const size_type burst = len < BurstSize ? len : BurstSize; size_type unique_burst = 0u; const const_iterator cend(this->cend()); while(unique_burst < burst && len > 0){ //Get the insertion position for each key const value_type & val = *first++; --len; pos = const_cast(*this).priv_lower_bound(pos, cend, KeyOfValue()(val)); //Check if already present if(pos != cend && !value_comp(*pos, val)){ ++skips[unique_burst]; continue; } //If not present, calculate position positions[unique_burst] = static_cast(pos - beg); if(++unique_burst < burst) skips[unique_burst] = 0u; } //Insert all in a single step in the precalculated positions this->m_data.m_vect.insert_ordered_at(unique_burst, positions + unique_burst, skips + unique_burst, first); //Next search position updated pos += unique_burst; } } /* template void priv_insert_equal_forward(ordered_range_t, FwdIt first, FwdIt last, std::forward_iterator_tag) { this->priv_insert_equal(first, last, std::forward_iterator_tag()); } */ template void priv_insert_equal(ordered_range_t, InIt first, InIt last, std::input_iterator_tag) { this->priv_insert_equal(first, last, std::input_iterator_tag()); } template void priv_insert_unique(ordered_unique_range_t, InIt first, InIt last, std::input_iterator_tag) { this->priv_insert_unique(first, last, std::input_iterator_tag()); } /* template void priv_insert_equal_forward(FwdIt first, FwdIt last, std::forward_iterator_tag) { const size_type len = static_cast(std::distance(first, last)); this->reserve(this->size()+len); this->priv_insert_equal(first, last, std::input_iterator_tag()); } */ template void priv_insert_equal(InIt first, InIt last, std::input_iterator_tag) { for ( ; first != last; ++first) this->insert_equal(*first); } }; template inline bool operator==(const flat_tree& x, const flat_tree& y) { return x.size() == y.size() && std::equal(x.begin(), x.end(), y.begin()); } template inline bool operator<(const flat_tree& x, const flat_tree& y) { return std::lexicographical_compare(x.begin(), x.end(), y.begin(), y.end()); } template inline bool operator!=(const flat_tree& x, const flat_tree& y) { return !(x == y); } template inline bool operator>(const flat_tree& x, const flat_tree& y) { return y < x; } template inline bool operator<=(const flat_tree& x, const flat_tree& y) { return !(y < x); } template inline bool operator>=(const flat_tree& x, const flat_tree& y) { return !(x < y); } template inline void swap(flat_tree& x, flat_tree& y) { x.swap(y); } } //namespace container_detail { } //namespace container { /* //!has_trivial_destructor_after_move<> == true_type //!specialization for optimizations template struct has_trivial_destructor_after_move > { static const bool value = has_trivial_destructor::value && has_trivial_destructor::value; }; */ } //namespace boost { #include #endif // BOOST_CONTAINER_FLAT_TREE_HPP