// Boost.Geometry (aka GGL, Generic Geometry Library) // Copyright (c) 2007-2012 Barend Gehrels, Amsterdam, the Netherlands. // Copyright (c) 2008-2012 Bruno Lalande, Paris, France. // Copyright (c) 2009-2012 Mateusz Loskot, London, UK. // Parts of Boost.Geometry are redesigned from Geodan's Geographic Library // (geolib/GGL), copyright (c) 1995-2010 Geodan, Amsterdam, the Netherlands. // Use, modification and distribution is subject to the Boost Software License, // Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at // http://www.boost.org/LICENSE_1_0.txt) #ifndef BOOST_GEOMETRY_STRATEGIES_TRANSFORM_MATRIX_TRANSFORMERS_HPP #define BOOST_GEOMETRY_STRATEGIES_TRANSFORM_MATRIX_TRANSFORMERS_HPP #include // Remove the ublas checking, otherwise the inverse might fail // (while nothing seems to be wrong) #define BOOST_UBLAS_TYPE_CHECK 0 #include #include #include #include #include #include #include #include #include namespace boost { namespace geometry { namespace strategy { namespace transform { /*! \brief Affine transformation strategy in Cartesian system. \details The strategy serves as a generic definition of affine transformation matrix and procedure of application it to given point. \see http://en.wikipedia.org/wiki/Affine_transformation and http://www.devmaster.net/wiki/Transformation_matrices \ingroup strategies \tparam P1 first point type (source) \tparam P2 second point type (target) \tparam Dimension1 number of dimensions to transform from first point \tparam Dimension1 number of dimensions to transform to second point */ template < typename P1, typename P2, std::size_t Dimension1, std::size_t Dimension2 > class ublas_transformer { }; template class ublas_transformer { protected : typedef typename select_coordinate_type::type coordinate_type; typedef coordinate_type ct; // Abbreviation typedef boost::numeric::ublas::matrix matrix_type; matrix_type m_matrix; public : inline ublas_transformer( ct const& m_0_0, ct const& m_0_1, ct const& m_0_2, ct const& m_1_0, ct const& m_1_1, ct const& m_1_2, ct const& m_2_0, ct const& m_2_1, ct const& m_2_2) : m_matrix(3, 3) { m_matrix(0,0) = m_0_0; m_matrix(0,1) = m_0_1; m_matrix(0,2) = m_0_2; m_matrix(1,0) = m_1_0; m_matrix(1,1) = m_1_1; m_matrix(1,2) = m_1_2; m_matrix(2,0) = m_2_0; m_matrix(2,1) = m_2_1; m_matrix(2,2) = m_2_2; } inline ublas_transformer(matrix_type const& matrix) : m_matrix(matrix) {} inline ublas_transformer() : m_matrix(3, 3) {} inline bool apply(P1 const& p1, P2& p2) const { assert_dimension_greater_equal(); assert_dimension_greater_equal(); coordinate_type const& c1 = get<0>(p1); coordinate_type const& c2 = get<1>(p1); coordinate_type p2x = c1 * m_matrix(0,0) + c2 * m_matrix(0,1) + m_matrix(0,2); coordinate_type p2y = c1 * m_matrix(1,0) + c2 * m_matrix(1,1) + m_matrix(1,2); typedef typename geometry::coordinate_type::type ct2; set<0>(p2, boost::numeric_cast(p2x)); set<1>(p2, boost::numeric_cast(p2y)); return true; } matrix_type const& matrix() const { return m_matrix; } }; // It IS possible to go from 3 to 2 coordinates template class ublas_transformer : public ublas_transformer { typedef typename select_coordinate_type::type coordinate_type; typedef coordinate_type ct; // Abbreviation public : inline ublas_transformer( ct const& m_0_0, ct const& m_0_1, ct const& m_0_2, ct const& m_1_0, ct const& m_1_1, ct const& m_1_2, ct const& m_2_0, ct const& m_2_1, ct const& m_2_2) : ublas_transformer( m_0_0, m_0_1, m_0_2, m_1_0, m_1_1, m_1_2, m_2_0, m_2_1, m_2_2) {} inline ublas_transformer() : ublas_transformer() {} }; template class ublas_transformer { protected : typedef typename select_coordinate_type::type coordinate_type; typedef coordinate_type ct; // Abbreviation typedef boost::numeric::ublas::matrix matrix_type; matrix_type m_matrix; inline ublas_transformer( ct const& m_0_0, ct const& m_0_1, ct const& m_0_2, ct const& m_0_3, ct const& m_1_0, ct const& m_1_1, ct const& m_1_2, ct const& m_1_3, ct const& m_2_0, ct const& m_2_1, ct const& m_2_2, ct const& m_2_3, ct const& m_3_0, ct const& m_3_1, ct const& m_3_2, ct const& m_3_3 ) : m_matrix(4, 4) { m_matrix(0,0) = m_0_0; m_matrix(0,1) = m_0_1; m_matrix(0,2) = m_0_2; m_matrix(0,3) = m_0_3; m_matrix(1,0) = m_1_0; m_matrix(1,1) = m_1_1; m_matrix(1,2) = m_1_2; m_matrix(1,3) = m_1_3; m_matrix(2,0) = m_2_0; m_matrix(2,1) = m_2_1; m_matrix(2,2) = m_2_2; m_matrix(2,3) = m_2_3; m_matrix(3,0) = m_3_0; m_matrix(3,1) = m_3_1; m_matrix(3,2) = m_3_2; m_matrix(3,3) = m_3_3; } inline ublas_transformer() : m_matrix(4, 4) {} public : inline bool apply(P1 const& p1, P2& p2) const { coordinate_type const& c1 = get<0>(p1); coordinate_type const& c2 = get<1>(p1); coordinate_type const& c3 = get<2>(p1); typedef typename geometry::coordinate_type::type ct2; set<0>(p2, boost::numeric_cast( c1 * m_matrix(0,0) + c2 * m_matrix(0,1) + c3 * m_matrix(0,2) + m_matrix(0,3))); set<1>(p2, boost::numeric_cast( c1 * m_matrix(1,0) + c2 * m_matrix(1,1) + c3 * m_matrix(1,2) + m_matrix(1,3))); set<2>(p2, boost::numeric_cast( c1 * m_matrix(2,0) + c2 * m_matrix(2,1) + c3 * m_matrix(2,2) + m_matrix(2,3))); return true; } matrix_type const& matrix() const { return m_matrix; } }; /*! \brief Strategy of translate transformation in Cartesian system. \details Translate moves a geometry a fixed distance in 2 or 3 dimensions. \see http://en.wikipedia.org/wiki/Translation_%28geometry%29 \ingroup strategies \tparam P1 first point type \tparam P2 second point type \tparam Dimension1 number of dimensions to transform from first point \tparam Dimension1 number of dimensions to transform to second point */ template < typename P1, typename P2, std::size_t Dimension1 = geometry::dimension::type::value, std::size_t Dimension2 = geometry::dimension::type::value > class translate_transformer { }; template class translate_transformer : public ublas_transformer { typedef typename select_coordinate_type::type coordinate_type; public : // To have translate transformers compatible for 2/3 dimensions, the // constructor takes an optional third argument doing nothing. inline translate_transformer(coordinate_type const& translate_x, coordinate_type const& translate_y, coordinate_type const& = 0) : ublas_transformer( 1, 0, translate_x, 0, 1, translate_y, 0, 0, 1) {} }; template class translate_transformer : public ublas_transformer { typedef typename select_coordinate_type::type coordinate_type; public : inline translate_transformer(coordinate_type const& translate_x, coordinate_type const& translate_y, coordinate_type const& translate_z) : ublas_transformer( 1, 0, 0, translate_x, 0, 1, 0, translate_y, 0, 0, 1, translate_z, 0, 0, 0, 1) {} }; /*! \brief Strategy of scale transformation in Cartesian system. \details Scale scales a geometry up or down in all its dimensions. \see http://en.wikipedia.org/wiki/Scaling_%28geometry%29 \ingroup strategies \tparam P1 first point type \tparam P2 second point type \tparam Dimension1 number of dimensions to transform from first point \tparam Dimension1 number of dimensions to transform to second point */ template < typename P1, typename P2 = P1, std::size_t Dimension1 = geometry::dimension::type::value, std::size_t Dimension2 = geometry::dimension::type::value > class scale_transformer { }; template class scale_transformer : public ublas_transformer { typedef typename select_coordinate_type::type coordinate_type; public : inline scale_transformer(coordinate_type const& scale_x, coordinate_type const& scale_y, coordinate_type const& = 0) : ublas_transformer( scale_x, 0, 0, 0, scale_y, 0, 0, 0, 1) {} inline scale_transformer(coordinate_type const& scale) : ublas_transformer( scale, 0, 0, 0, scale, 0, 0, 0, 1) {} }; template class scale_transformer : public ublas_transformer { typedef typename select_coordinate_type::type coordinate_type; inline scale_transformer(coordinate_type const& scale_x, coordinate_type const& scale_y, coordinate_type const& scale_z) : ublas_transformer( scale_x, 0, 0, 0, 0, scale_y, 0, 0, 0, 0, scale_z, 0, 0, 0, 0, 1) {} inline scale_transformer(coordinate_type const& scale) : ublas_transformer( scale, 0, 0, 0, 0, scale, 0, 0, 0, 0, scale, 0, 0, 0, 0, 1) {} }; #ifndef DOXYGEN_NO_DETAIL namespace detail { template struct as_radian {}; template <> struct as_radian { template static inline T get(T const& value) { return value; } }; template <> struct as_radian { template static inline T get(T const& value) { return value * math::d2r; } }; template < typename P1, typename P2, std::size_t Dimension1 = geometry::dimension::type::value, std::size_t Dimension2 = geometry::dimension::type::value > class rad_rotate_transformer : public ublas_transformer { // Angle has type of coordinate type, but at least a double typedef typename select_most_precise < typename select_coordinate_type::type, double >::type angle_type; public : inline rad_rotate_transformer(angle_type const& angle) : ublas_transformer( cos(angle), sin(angle), 0, -sin(angle), cos(angle), 0, 0, 0, 1) {} }; } // namespace detail #endif // DOXYGEN_NO_DETAIL /*! \brief Strategy of rotate transformation in Cartesian system. \details Rotate rotates a geometry of specified angle about a fixed point (e.g. origin). \see http://en.wikipedia.org/wiki/Rotation_%28mathematics%29 \ingroup strategies \tparam P1 first point type \tparam P2 second point type \tparam DegreeOrRadian degree/or/radian, type of rotation angle specification \note A single angle is needed to specify a rotation in 2D. Not yet in 3D, the 3D version requires special things to allow for rotation around X, Y, Z or arbitrary axis. \todo The 3D version will not compile. */ template class rotate_transformer : public detail::rad_rotate_transformer { // Angle has type of coordinate type, but at least a double typedef typename select_most_precise < typename select_coordinate_type::type, double >::type angle_type; public : inline rotate_transformer(angle_type const& angle) : detail::rad_rotate_transformer < P1, P2 >(detail::as_radian::get(angle)) {} }; }} // namespace strategy::transform }} // namespace boost::geometry #endif // BOOST_GEOMETRY_STRATEGIES_TRANSFORM_MATRIX_TRANSFORMERS_HPP