// boost heap: fibonacci heap // // Copyright (C) 2010 Tim Blechmann // // Distributed under the Boost Software License, Version 1.0. (See // accompanying file LICENSE_1_0.txt or copy at // http://www.boost.org/LICENSE_1_0.txt) #ifndef BOOST_HEAP_FIBONACCI_HEAP_HPP #define BOOST_HEAP_FIBONACCI_HEAP_HPP #include #include #include #include #include #include #include #include #ifndef BOOST_DOXYGEN_INVOKED #ifdef BOOST_HEAP_SANITYCHECKS #define BOOST_HEAP_ASSERT BOOST_ASSERT #else #define BOOST_HEAP_ASSERT(expression) #endif #endif namespace boost { namespace heap { namespace detail { typedef parameter::parameters, boost::parameter::optional, boost::parameter::optional, boost::parameter::optional, boost::parameter::optional > fibonacci_heap_signature; template struct make_fibonacci_heap_base { static const bool constant_time_size = parameter::binding::type::value; typedef typename detail::make_heap_base::type base_type; typedef typename detail::make_heap_base::allocator_argument allocator_argument; typedef typename detail::make_heap_base::compare_argument compare_argument; typedef marked_heap_node node_type; typedef typename allocator_argument::template rebind::other allocator_type; struct type: base_type, allocator_type { type(compare_argument const & arg): base_type(arg) {} #ifdef BOOST_HAS_RVALUE_REFS type(type && rhs): base_type(std::move(static_cast(rhs))), allocator_type(std::move(static_cast(rhs))) {} type(type & rhs): base_type(static_cast(rhs)), allocator_type(static_cast(rhs)) {} type & operator=(type && rhs) { base_type::operator=(std::move(static_cast(rhs))); allocator_type::operator=(std::move(static_cast(rhs))); return *this; } type & operator=(type const & rhs) { base_type::operator=(static_cast(rhs)); allocator_type::operator=(static_cast(rhs)); return *this; } #endif }; }; } /** * \class fibonacci_heap * \brief fibonacci heap * * The template parameter T is the type to be managed by the container. * The user can specify additional options and if no options are provided default options are used. * * The container supports the following options: * - \c boost::heap::stable<>, defaults to \c stable * - \c boost::heap::compare<>, defaults to \c compare > * - \c boost::heap::allocator<>, defaults to \c allocator > * - \c boost::heap::constant_time_size<>, defaults to \c constant_time_size * - \c boost::heap::stability_counter_type<>, defaults to \c stability_counter_type * */ #ifdef BOOST_DOXYGEN_INVOKED template #else template #endif class fibonacci_heap: private detail::make_fibonacci_heap_base::type >::type { typedef typename detail::fibonacci_heap_signature::bind::type bound_args; typedef detail::make_fibonacci_heap_base base_maker; typedef typename base_maker::type super_t; typedef typename super_t::size_holder_type size_holder; typedef typename super_t::internal_type internal_type; typedef typename base_maker::allocator_argument allocator_argument; template friend struct heap_merge_emulate; private: #ifndef BOOST_DOXYGEN_INVOKED struct implementation_defined: detail::extract_allocator_types { typedef T value_type; typedef typename detail::extract_allocator_types::size_type size_type; typedef typename detail::extract_allocator_types::reference reference; typedef typename base_maker::compare_argument value_compare; typedef typename base_maker::allocator_type allocator_type; typedef typename allocator_type::pointer node_pointer; typedef typename allocator_type::const_pointer const_node_pointer; typedef detail::heap_node_list node_list_type; typedef typename node_list_type::iterator node_list_iterator; typedef typename node_list_type::const_iterator node_list_const_iterator; typedef typename base_maker::node_type node; typedef detail::value_extractor value_extractor; typedef typename super_t::internal_compare internal_compare; typedef detail::node_handle handle_type; typedef detail::recursive_tree_iterator > iterator; typedef iterator const_iterator; typedef detail::tree_iterator, true, true, value_compare > ordered_iterator; }; typedef typename implementation_defined::node node; typedef typename implementation_defined::node_pointer node_pointer; typedef typename implementation_defined::node_list_type node_list_type; typedef typename implementation_defined::node_list_iterator node_list_iterator; typedef typename implementation_defined::node_list_const_iterator node_list_const_iterator; typedef typename implementation_defined::internal_compare internal_compare; #endif public: typedef T value_type; typedef typename implementation_defined::size_type size_type; typedef typename implementation_defined::difference_type difference_type; typedef typename implementation_defined::value_compare value_compare; typedef typename implementation_defined::allocator_type allocator_type; typedef typename implementation_defined::reference reference; typedef typename implementation_defined::const_reference const_reference; typedef typename implementation_defined::pointer pointer; typedef typename implementation_defined::const_pointer const_pointer; /// \copydoc boost::heap::priority_queue::iterator typedef typename implementation_defined::iterator iterator; typedef typename implementation_defined::const_iterator const_iterator; typedef typename implementation_defined::ordered_iterator ordered_iterator; typedef typename implementation_defined::handle_type handle_type; static const bool constant_time_size = base_maker::constant_time_size; static const bool has_ordered_iterators = true; static const bool is_mergable = true; static const bool is_stable = detail::extract_stable::value; static const bool has_reserve = false; /// \copydoc boost::heap::priority_queue::priority_queue(value_compare const &) explicit fibonacci_heap(value_compare const & cmp = value_compare()): super_t(cmp), top_element(0) {} /// \copydoc boost::heap::priority_queue::priority_queue(priority_queue const &) fibonacci_heap(fibonacci_heap const & rhs): super_t(rhs), top_element(0) { if (rhs.empty()) return; clone_forest(rhs); size_holder::set_size(rhs.size()); } #ifdef BOOST_HAS_RVALUE_REFS /// \copydoc boost::heap::priority_queue::priority_queue(priority_queue &&) fibonacci_heap(fibonacci_heap && rhs): super_t(std::move(rhs)), top_element(rhs.top_element) { roots.splice(roots.begin(), rhs.roots); rhs.top_element = NULL; } fibonacci_heap(fibonacci_heap & rhs): super_t(rhs), top_element(rhs.top_element) { roots.splice(roots.begin(), rhs.roots); rhs.top_element = NULL; } /// \copydoc boost::heap::priority_queue::operator=(priority_queue &&) fibonacci_heap & operator=(fibonacci_heap && rhs) { clear(); super_t::operator=(std::move(rhs)); roots.splice(roots.begin(), rhs.roots); top_element = rhs.top_element; rhs.top_element = NULL; return *this; } #endif /// \copydoc boost::heap::priority_queue::operator=(priority_queue const &) fibonacci_heap & operator=(fibonacci_heap const & rhs) { clear(); size_holder::set_size(rhs.size()); static_cast(*this) = rhs; if (rhs.empty()) top_element = NULL; else clone_forest(rhs); return *this; } ~fibonacci_heap(void) { clear(); } /// \copydoc boost::heap::priority_queue::empty bool empty(void) const { if (constant_time_size) return size() == 0; else return roots.empty(); } /// \copydoc boost::heap::priority_queue::size size_type size(void) const { if (constant_time_size) return size_holder::get_size(); if (empty()) return 0; else return detail::count_list_nodes(roots); } /// \copydoc boost::heap::priority_queue::max_size size_type max_size(void) const { return allocator_type::max_size(); } /// \copydoc boost::heap::priority_queue::clear void clear(void) { typedef detail::node_disposer disposer; roots.clear_and_dispose(disposer(*this)); size_holder::set_size(0); top_element = NULL; } /// \copydoc boost::heap::priority_queue::get_allocator allocator_type get_allocator(void) const { return *this; } /// \copydoc boost::heap::priority_queue::swap void swap(fibonacci_heap & rhs) { super_t::swap(rhs); std::swap(top_element, rhs.top_element); roots.swap(rhs.roots); } /// \copydoc boost::heap::priority_queue::top value_type const & top(void) const { BOOST_ASSERT(!empty()); return super_t::get_value(top_element->value); } /** * \b Effects: Adds a new element to the priority queue. Returns handle to element * * \b Complexity: Constant. * * \b Note: Does not invalidate iterators. * * */ handle_type push(value_type const & v) { size_holder::increment(); node_pointer n = allocator_type::allocate(1); new(n) node(super_t::make_node(v)); roots.push_front(*n); if (!top_element || super_t::operator()(top_element->value, n->value)) top_element = n; return handle_type(n); } #if defined(BOOST_HAS_RVALUE_REFS) && !defined(BOOST_NO_VARIADIC_TEMPLATES) /** * \b Effects: Adds a new element to the priority queue. The element is directly constructed in-place. Returns handle to element. * * \b Complexity: Constant. * * \b Note: Does not invalidate iterators. * * */ template handle_type emplace(Args&&... args) { size_holder::increment(); node_pointer n = allocator_type::allocate(1); new(n) node(super_t::make_node(std::forward(args)...)); roots.push_front(*n); if (!top_element || super_t::operator()(top_element->value, n->value)) top_element = n; return handle_type(n); } #endif /** * \b Effects: Removes the top element from the priority queue. * * \b Complexity: Logarithmic (amortized). Linear (worst case). * * */ void pop(void) { BOOST_ASSERT(!empty()); node_pointer element = top_element; roots.erase(node_list_type::s_iterator_to(*element)); add_children_to_root(element); element->~node(); allocator_type::deallocate(element, 1); size_holder::decrement(); if (!empty()) consolidate(); else top_element = NULL; } /** * \b Effects: Assigns \c v to the element handled by \c handle & updates the priority queue. * * \b Complexity: Logarithmic if current value < v, Constant otherwise. * * */ void update (handle_type handle, const_reference v) { if (super_t::operator()(super_t::get_value(handle.node_->value), v)) increase(handle, v); else decrease(handle, v); } /** \copydoc boost::heap::fibonacci_heap::update(handle_type, const_reference) * * \b Rationale: The lazy update function is a modification of the traditional update, that just invalidates * the iterator the the object referred to by the handle. * */ void update_lazy(handle_type handle, const_reference v) { handle.node_->value = super_t::make_node(v); update_lazy(handle); } /** * \b Effects: Updates the heap after the element handled by \c handle has been changed. * * \b Complexity: Logarithmic. * * \b Note: If this is not called, after a handle has been updated, the behavior of the data structure is undefined! * */ void update (handle_type handle) { node_pointer n = handle.node_; node_pointer parent = n->get_parent(); if (parent) { n->parent = NULL; roots.splice(roots.begin(), parent->children, node_list_type::s_iterator_to(*n)); } add_children_to_root(n); consolidate(); } /** \copydoc boost::heap::fibonacci_heap::update (handle_type handle) * * \b Rationale: The lazy update function is a modification of the traditional update, that just invalidates * the iterator the the object referred to by the handle. * */ void update_lazy (handle_type handle) { node_pointer n = handle.node_; node_pointer parent = n->get_parent(); if (parent) { n->parent = NULL; roots.splice(roots.begin(), parent->children, node_list_type::s_iterator_to(*n)); } add_children_to_root(n); } /** * \b Effects: Assigns \c v to the element handled by \c handle & updates the priority queue. * * \b Complexity: Constant. * * \b Note: The new value is expected to be greater than the current one * */ void increase (handle_type handle, const_reference v) { handle.node_->value = super_t::make_node(v); increase(handle); } /** * \b Effects: Updates the heap after the element handled by \c handle has been changed. * * \b Complexity: Constant. * * \b Note: If this is not called, after a handle has been updated, the behavior of the data structure is undefined! * */ void increase (handle_type handle) { node_pointer n = handle.node_; if (n->parent) { if (super_t::operator()(n->get_parent()->value, n->value)) { node_pointer parent = n->get_parent(); cut(n); cascading_cut(parent); } } if (super_t::operator()(top_element->value, n->value)) { top_element = n; return; } } /** * \b Effects: Assigns \c v to the element handled by \c handle & updates the priority queue. * * \b Complexity: Logarithmic. * * \b Note: The new value is expected to be less than the current one * */ void decrease (handle_type handle, const_reference v) { handle.node_->value = super_t::make_node(v); decrease(handle); } /** * \b Effects: Updates the heap after the element handled by \c handle has been changed. * * \b Complexity: Logarithmic. * * \b Note: The new value is expected to be less than the current one. If this is not called, after a handle has been updated, the behavior of the data structure is undefined! * */ void decrease (handle_type handle) { update(handle); } /** * \b Effects: Removes the element handled by \c handle from the priority_queue. * * \b Complexity: Logarithmic. * */ void erase(handle_type const & handle) { node_pointer n = handle.node_; node_pointer parent = n->get_parent(); if (parent) parent->children.erase(node_list_type::s_iterator_to(*n)); else roots.erase(node_list_type::s_iterator_to(*n)); add_children_to_root(n); consolidate(); n->~node(); allocator_type::deallocate(n, 1); size_holder::decrement(); } /// \copydoc boost::heap::priority_queue::begin iterator begin(void) const { return iterator(roots.begin()); } /// \copydoc boost::heap::priority_queue::end iterator end(void) const { return iterator(roots.end()); } /** * \b Effects: Returns an ordered iterator to the first element contained in the priority queue. * * \b Note: Ordered iterators traverse the priority queue in heap order. * */ ordered_iterator ordered_begin(void) const { return ordered_iterator(roots.begin(), roots.end(), top_element, super_t::value_comp()); } /** * \b Effects: Returns an ordered iterator to the first element contained in the priority queue. * * \b Note: Ordered iterators traverse the priority queue in heap order. * */ ordered_iterator ordered_end(void) const { return ordered_iterator(NULL, super_t::value_comp()); } /** * \b Effects: Merge with priority queue rhs. * * \b Complexity: Constant. * * */ void merge(fibonacci_heap & rhs) { size_holder::add(rhs.get_size()); if (!top_element || (rhs.top_element && super_t::operator()(top_element->value, rhs.top_element->value))) top_element = rhs.top_element; roots.splice(roots.end(), rhs.roots); rhs.set_size(0); super_t::set_stability_count(std::max(super_t::get_stability_count(), rhs.get_stability_count())); rhs.set_stability_count(0); } /// \copydoc boost::heap::d_ary_heap_mutable::s_handle_from_iterator static handle_type s_handle_from_iterator(iterator const & it) { node * ptr = const_cast(it.get_node()); return handle_type(ptr); } /// \copydoc boost::heap::priority_queue::value_comp value_compare const & value_comp(void) const { return super_t::value_comp(); } /// \copydoc boost::heap::priority_queue::operator<(HeapType const & rhs) const template bool operator<(HeapType const & rhs) const { return detail::heap_compare(*this, rhs); } /// \copydoc boost::heap::priority_queue::operator>(HeapType const & rhs) const template bool operator>(HeapType const & rhs) const { return detail::heap_compare(rhs, *this); } /// \copydoc boost::heap::priority_queue::operator>=(HeapType const & rhs) const template bool operator>=(HeapType const & rhs) const { return !operator<(rhs); } /// \copydoc boost::heap::priority_queue::operator<=(HeapType const & rhs) const template bool operator<=(HeapType const & rhs) const { return !operator>(rhs); } /// \copydoc boost::heap::priority_queue::operator==(HeapType const & rhs) const template bool operator==(HeapType const & rhs) const { return detail::heap_equality(*this, rhs); } /// \copydoc boost::heap::priority_queue::operator!=(HeapType const & rhs) const template bool operator!=(HeapType const & rhs) const { return !(*this == rhs); } private: #if !defined(BOOST_DOXYGEN_INVOKED) void clone_forest(fibonacci_heap const & rhs) { BOOST_HEAP_ASSERT(roots.empty()); typedef typename node::template node_cloner node_cloner; roots.clone_from(rhs.roots, node_cloner(*this, NULL), detail::nop_disposer()); top_element = detail::find_max_child(roots, super_t::get_internal_cmp()); } void cut(node_pointer n) { node_pointer parent = n->get_parent(); roots.splice(roots.begin(), parent->children, node_list_type::s_iterator_to(*n)); n->parent = 0; n->mark = false; } void cascading_cut(node_pointer n) { node_pointer parent = n->get_parent(); if (parent) { if (!parent->mark) parent->mark = true; else { cut(n); cascading_cut(parent); } } } void add_children_to_root(node_pointer n) { for (node_list_iterator it = n->children.begin(); it != n->children.end(); ++it) { node_pointer child = static_cast(&*it); child->parent = 0; } roots.splice(roots.end(), n->children); } void consolidate(void) { if (roots.empty()) return; static const size_type max_log2 = sizeof(size_type) * 8; boost::array aux; aux.assign(NULL); node_list_iterator it = roots.begin(); top_element = static_cast(&*it); do { node_pointer n = static_cast(&*it); ++it; size_type node_rank = n->child_count(); if (aux[node_rank] == NULL) aux[node_rank] = n; else { do { node_pointer other = aux[node_rank]; if (super_t::operator()(n->value, other->value)) std::swap(n, other); if (other->parent) n->children.splice(n->children.end(), other->parent->children, node_list_type::s_iterator_to(*other)); else n->children.splice(n->children.end(), roots, node_list_type::s_iterator_to(*other)); other->parent = n; aux[node_rank] = NULL; node_rank = n->child_count(); } while (aux[node_rank] != NULL); aux[node_rank] = n; } if (super_t::operator()(top_element->value, n->value)) top_element = n; } while (it != roots.end()); } mutable node_pointer top_element; node_list_type roots; #endif }; } /* namespace heap */ } /* namespace boost */ #undef BOOST_HEAP_ASSERT #endif /* BOOST_HEAP_FIBONACCI_HEAP_HPP */