////////////////////////////////////////////////////////////////////////////// // // (C) Copyright Ion Gaztanaga 2005-2008. Distributed under the Boost // Software License, Version 1.0. (See accompanying file // LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt) // // See http://www.boost.org/libs/interprocess for documentation. // ////////////////////////////////////////////////////////////////////////////// #ifndef BOOST_INTERPROCESS_FLAT_MAP_HPP #define BOOST_INTERPROCESS_FLAT_MAP_HPP #if (defined _MSC_VER) && (_MSC_VER >= 1200) # pragma once #endif #include #include #include #include #include #include #include #include #include #include #include namespace boost { namespace interprocess { /// @cond // Forward declarations of operators == and <, needed for friend declarations. template class flat_map; template inline bool operator==(const flat_map& x, const flat_map& y); template inline bool operator<(const flat_map& x, const flat_map& y); /// @endcond //! A flat_map is a kind of associative container that supports unique keys (contains at //! most one of each key value) and provides for fast retrieval of values of another //! type T based on the keys. The flat_map class supports random-access iterators. //! //! A flat_map satisfies all of the requirements of a container and of a reversible //! container and of an associative container. A flat_map also provides //! most operations described for unique keys. For a //! flat_map the key_type is Key and the value_type is std::pair //! (unlike std::map which value_type is std::pair<const Key, T>). //! //! Pred is the ordering function for Keys (e.g. std::less). //! //! Alloc is the allocator to allocate the value_types //! (e.g. boost::interprocess:allocator< std::pair). //! //! flat_map is similar to std::map but it's implemented like an ordered vector. //! This means that inserting a new element into a flat_map invalidates //! previous iterators and references //! //! Erasing an element of a flat_map invalidates iterators and references //! pointing to elements that come after (their keys are bigger) the erased element. template class flat_map { /// @cond private: //This is the real tree stored here. It's based on a movable pair typedef detail::flat_tree, detail::select1st< detail::pair >, Pred, typename Alloc::template rebind >::other> impl_tree_t; //This is the tree that we should store if pair was movable typedef detail::flat_tree, detail::select1st< std::pair >, Pred, Alloc> tree_t; // tree_t m_flat_tree; // flat tree representing flat_map impl_tree_t m_flat_tree; // flat tree representing flat_map typedef typename impl_tree_t::value_type impl_value_type; typedef typename impl_tree_t::pointer impl_pointer; typedef typename impl_tree_t::const_pointer impl_const_pointer; typedef typename impl_tree_t::reference impl_reference; typedef typename impl_tree_t::const_reference impl_const_reference; typedef typename impl_tree_t::value_compare impl_value_compare; typedef typename impl_tree_t::iterator impl_iterator; typedef typename impl_tree_t::const_iterator impl_const_iterator; typedef typename impl_tree_t::reverse_iterator impl_reverse_iterator; typedef typename impl_tree_t::const_reverse_iterator impl_const_reverse_iterator; typedef typename impl_tree_t::allocator_type impl_allocator_type; #ifndef BOOST_INTERPROCESS_RVALUE_REFERENCE typedef detail::moved_object impl_moved_value_type; #else typedef impl_value_type&& impl_moved_value_type; #endif template static D &force(const S &s) { return *const_cast((reinterpret_cast(&s))); } #ifdef BOOST_INTERPROCESS_RVALUE_REFERENCE template static D &&force(S &&s) { return reinterpret_cast(s); } #endif /// @endcond public: // typedefs: typedef typename tree_t::key_type key_type; typedef typename tree_t::value_type value_type; typedef typename tree_t::pointer pointer; typedef typename tree_t::const_pointer const_pointer; typedef typename tree_t::reference reference; typedef typename tree_t::const_reference const_reference; typedef typename tree_t::value_compare value_compare; typedef T mapped_type; typedef typename tree_t::key_compare key_compare; typedef typename tree_t::iterator iterator; typedef typename tree_t::const_iterator const_iterator; typedef typename tree_t::reverse_iterator reverse_iterator; typedef typename tree_t::const_reverse_iterator const_reverse_iterator; typedef typename tree_t::size_type size_type; typedef typename tree_t::difference_type difference_type; typedef typename tree_t::allocator_type allocator_type; typedef typename tree_t::stored_allocator_type stored_allocator_type; //! Effects: Constructs an empty flat_map using the specified //! comparison object and allocator. //! //! Complexity: Constant. explicit flat_map(const Pred& comp = Pred(), const allocator_type& a = allocator_type()) : m_flat_tree(comp, force(a)) {} //! Effects: Constructs an empty flat_map using the specified comparison object and //! allocator, and inserts elements from the range [first ,last ). //! //! Complexity: Linear in N if the range [first ,last ) is already sorted using //! comp and otherwise N logN, where N is last - first. template flat_map(InputIterator first, InputIterator last, const Pred& comp = Pred(), const allocator_type& a = allocator_type()) : m_flat_tree(comp, force(a)) { m_flat_tree.insert_unique(first, last); } //! Effects: Copy constructs a flat_map. //! //! Complexity: Linear in x.size(). flat_map(const flat_map& x) : m_flat_tree(x.m_flat_tree) {} //! Effects: Move constructs a flat_map. //! Constructs *this using x's resources. //! //! Complexity: Construct. //! //! Postcondition: x is emptied. #ifndef BOOST_INTERPROCESS_RVALUE_REFERENCE flat_map(const detail::moved_object >& x) : m_flat_tree(move(x.get().m_flat_tree)) {} #else flat_map(flat_map && x) : m_flat_tree(move(x.m_flat_tree)) {} #endif //! Effects: Makes *this a copy of x. //! //! Complexity: Linear in x.size(). flat_map& operator=(const flat_map& x) { m_flat_tree = x.m_flat_tree; return *this; } //! Effects: Move constructs a flat_map. //! Constructs *this using x's resources. //! //! Complexity: Construct. //! //! Postcondition: x is emptied. #ifndef BOOST_INTERPROCESS_RVALUE_REFERENCE flat_map& operator=(const detail::moved_object >& mx) { m_flat_tree = move(mx.get().m_flat_tree); return *this; } #else flat_map& operator=(flat_map && mx) { m_flat_tree = move(mx.m_flat_tree); return *this; } #endif //! Effects: Returns the comparison object out //! of which a was constructed. //! //! Complexity: Constant. key_compare key_comp() const { return force(m_flat_tree.key_comp()); } //! Effects: Returns an object of value_compare constructed out //! of the comparison object. //! //! Complexity: Constant. value_compare value_comp() const { return value_compare(force(m_flat_tree.key_comp())); } //! Effects: Returns a copy of the Allocator that //! was passed to the object’s constructor. //! //! Complexity: Constant. allocator_type get_allocator() const { return force(m_flat_tree.get_allocator()); } const stored_allocator_type &get_stored_allocator() const { return force(m_flat_tree.get_stored_allocator()); } stored_allocator_type &get_stored_allocator() { return force(m_flat_tree.get_stored_allocator()); } //! Effects: Returns an iterator to the first element contained in the container. //! //! Throws: Nothing. //! //! Complexity: Constant. iterator begin() { return force(m_flat_tree.begin()); } //! Effects: Returns a const_iterator to the first element contained in the container. //! //! Throws: Nothing. //! //! Complexity: Constant. const_iterator begin() const { return force(m_flat_tree.begin()); } //! Effects: Returns an iterator to the end of the container. //! //! Throws: Nothing. //! //! Complexity: Constant. iterator end() { return force(m_flat_tree.end()); } //! Effects: Returns a const_iterator to the end of the container. //! //! Throws: Nothing. //! //! Complexity: Constant. const_iterator end() const { return force(m_flat_tree.end()); } //! Effects: Returns a reverse_iterator pointing to the beginning //! of the reversed container. //! //! Throws: Nothing. //! //! Complexity: Constant. reverse_iterator rbegin() { return force(m_flat_tree.rbegin()); } //! Effects: Returns a const_reverse_iterator pointing to the beginning //! of the reversed container. //! //! Throws: Nothing. //! //! Complexity: Constant. const_reverse_iterator rbegin() const { return force(m_flat_tree.rbegin()); } //! Effects: Returns a reverse_iterator pointing to the end //! of the reversed container. //! //! Throws: Nothing. //! //! Complexity: Constant. reverse_iterator rend() { return force(m_flat_tree.rend()); } //! Effects: Returns a const_reverse_iterator pointing to the end //! of the reversed container. //! //! Throws: Nothing. //! //! Complexity: Constant. const_reverse_iterator rend() const { return force(m_flat_tree.rend()); } //! Effects: Returns true if the container contains no elements. //! //! Throws: Nothing. //! //! Complexity: Constant. bool empty() const { return m_flat_tree.empty(); } //! Effects: Returns the number of the elements contained in the container. //! //! Throws: Nothing. //! //! Complexity: Constant. size_type size() const { return m_flat_tree.size(); } //! Effects: Returns the largest possible size of the container. //! //! Throws: Nothing. //! //! Complexity: Constant. size_type max_size() const { return m_flat_tree.max_size(); } //! Effects: If there is no key equivalent to x in the flat_map, inserts //! value_type(move(x), T()) into the flat_map (the key is move-constructed) //! //! Returns: A reference to the mapped_type corresponding to x in *this. //! //! Complexity: Logarithmic. #ifndef BOOST_INTERPROCESS_RVALUE_REFERENCE //! Effects: If there is no key equivalent to x in the flat_map, inserts //! value_type(x, T()) into the flat_map. //! //! Returns: A reference to the mapped_type corresponding to x in *this. //! //! Complexity: Logarithmic. T &operator[](const key_type& k) { iterator i = lower_bound(k); // i->first is greater than or equivalent to k. if (i == end() || key_comp()(k, (*i).first)) i = insert(i, value_type(k, T())); return (*i).second; } T &operator[](const detail::moved_object& mk) { key_type &k = mk.get(); iterator i = lower_bound(k); // i->first is greater than or equivalent to k. if (i == end() || key_comp()(k, (*i).first)) i = insert(i, value_type(k, move(T()))); return (*i).second; } #else //! Effects: If there is no key equivalent to x in the flat_map, inserts //! value_type(x, T()) into the flat_map. //! //! Returns: A reference to the mapped_type corresponding to x in *this. //! //! Complexity: Logarithmic. T &operator[](key_type &&mk) { key_type &k = mk; iterator i = lower_bound(k); // i->first is greater than or equivalent to k. if (i == end() || key_comp()(k, (*i).first)) i = insert(i, value_type(forward(k), move(T()))); return (*i).second; } #endif //! Effects: Swaps the contents of *this and x. //! If this->allocator_type() != x.allocator_type() allocators are also swapped. //! //! Throws: Nothing. //! //! Complexity: Constant. void swap(flat_map& x) { m_flat_tree.swap(x.m_flat_tree); } //! Effects: Swaps the contents of *this and x. //! If this->allocator_type() != x.allocator_type() allocators are also swapped. //! //! Throws: Nothing. //! //! Complexity: Constant. #ifndef BOOST_INTERPROCESS_RVALUE_REFERENCE void swap(const detail::moved_object >& x) { m_flat_tree.swap(x.get().m_flat_tree); } #else void swap(flat_map && x) { m_flat_tree.swap(x.m_flat_tree); } #endif //! Effects: Inserts x if and only if there is no element in the container //! with key equivalent to the key of x. //! //! Returns: The bool component of the returned pair is true if and only //! if the insertion takes place, and the iterator component of the pair //! points to the element with key equivalent to the key of x. //! //! Complexity: Logarithmic search time plus linear insertion //! to the elements with bigger keys than x. //! //! Note: If an element it's inserted it might invalidate elements. std::pair insert(const value_type& x) { return force >( m_flat_tree.insert_unique(force(x))); } //! Effects: Inserts a new value_type move constructed from the pair if and //! only if there is no element in the container with key equivalent to the key of x. //! //! Returns: The bool component of the returned pair is true if and only //! if the insertion takes place, and the iterator component of the pair //! points to the element with key equivalent to the key of x. //! //! Complexity: Logarithmic search time plus linear insertion //! to the elements with bigger keys than x. //! //! Note: If an element it's inserted it might invalidate elements. #ifndef BOOST_INTERPROCESS_RVALUE_REFERENCE std::pair insert(const detail::moved_object& x) { return force >( m_flat_tree.insert_unique(force(x))); } #else std::pair insert(value_type &&x) { return force >( m_flat_tree.insert_unique(force(move(x)))); } #endif //! Effects: Inserts a copy of x in the container if and only if there is //! no element in the container with key equivalent to the key of x. //! p is a hint pointing to where the insert should start to search. //! //! Returns: An iterator pointing to the element with key equivalent //! to the key of x. //! //! Complexity: Logarithmic search time (constant if x is inserted //! right before p) plus insertion linear to the elements with bigger keys than x. //! //! Note: If an element it's inserted it might invalidate elements. iterator insert(iterator position, const value_type& x) { return force( m_flat_tree.insert_unique(force(position), force(x))); } //! Effects: Inserts an element move constructed from x in the container. //! p is a hint pointing to where the insert should start to search. //! //! Returns: An iterator pointing to the element with key equivalent to the key of x. //! //! Complexity: Logarithmic search time (constant if x is inserted //! right before p) plus insertion linear to the elements with bigger keys than x. //! //! Note: If an element it's inserted it might invalidate elements. #ifndef BOOST_INTERPROCESS_RVALUE_REFERENCE iterator insert(iterator position, const detail::moved_object& x) { return force( m_flat_tree.insert_unique(force(position), force(x))); } #else iterator insert(iterator position, value_type &&x) { return force( m_flat_tree.insert_unique(force(position), force(move(x)))); } #endif //! Requires: i, j are not iterators into *this. //! //! Effects: inserts each element from the range [i,j) if and only //! if there is no element with key equivalent to the key of that element. //! //! Complexity: N log(size()+N) (N is the distance from i to j) //! search time plus N*size() insertion time. //! //! Note: If an element it's inserted it might invalidate elements. template void insert(InputIterator first, InputIterator last) { m_flat_tree.insert_unique(first, last); } //! Effects: Erases the element pointed to by position. //! //! Returns: Returns an iterator pointing to the element immediately //! following q prior to the element being erased. If no such element exists, //! returns end(). //! //! Complexity: Linear to the elements with keys bigger than position //! //! Note: Invalidates elements with keys //! not less than the erased element. void erase(const_iterator position) { m_flat_tree.erase(force(position)); } //! Effects: Erases all elements in the container with key equivalent to x. //! //! Returns: Returns the number of erased elements. //! //! Complexity: Logarithmic search time plus erasure time //! linear to the elements with bigger keys. size_type erase(const key_type& x) { return m_flat_tree.erase(x); } //! Effects: Erases all the elements in the range [first, last). //! //! Returns: Returns last. //! //! Complexity: size()*N where N is the distance from first to last. //! //! Complexity: Logarithmic search time plus erasure time //! linear to the elements with bigger keys. void erase(const_iterator first, const_iterator last) { m_flat_tree.erase(force(first), force(last)); } //! Effects: erase(a.begin(),a.end()). //! //! Postcondition: size() == 0. //! //! Complexity: linear in size(). void clear() { m_flat_tree.clear(); } //! Effects: Tries to deallocate the excess of memory created // with previous allocations. The size of the vector is unchanged //! //! Throws: If memory allocation throws, or T's copy constructor throws. //! //! Complexity: Linear to size(). void shrink_to_fit() { m_flat_tree.shrink_to_fit(); } //! Returns: An iterator pointing to an element with the key //! equivalent to x, or end() if such an element is not found. //! //! Complexity: Logarithmic. iterator find(const key_type& x) { return force(m_flat_tree.find(x)); } //! Returns: A const_iterator pointing to an element with the key //! equivalent to x, or end() if such an element is not found. //! //! Complexity: Logarithmic.s const_iterator find(const key_type& x) const { return force(m_flat_tree.find(x)); } //! Returns: The number of elements with key equivalent to x. //! //! Complexity: log(size())+count(k) size_type count(const key_type& x) const { return m_flat_tree.find(x) == m_flat_tree.end() ? 0 : 1; } //! Returns: An iterator pointing to the first element with key not less //! than k, or a.end() if such an element is not found. //! //! Complexity: Logarithmic iterator lower_bound(const key_type& x) { return force(m_flat_tree.lower_bound(x)); } //! Returns: A const iterator pointing to the first element with key not //! less than k, or a.end() if such an element is not found. //! //! Complexity: Logarithmic const_iterator lower_bound(const key_type& x) const { return force(m_flat_tree.lower_bound(x)); } //! Returns: An iterator pointing to the first element with key not less //! than x, or end() if such an element is not found. //! //! Complexity: Logarithmic iterator upper_bound(const key_type& x) { return force(m_flat_tree.upper_bound(x)); } //! Returns: A const iterator pointing to the first element with key not //! less than x, or end() if such an element is not found. //! //! Complexity: Logarithmic const_iterator upper_bound(const key_type& x) const { return force(m_flat_tree.upper_bound(x)); } //! Effects: Equivalent to std::make_pair(this->lower_bound(k), this->upper_bound(k)). //! //! Complexity: Logarithmic std::pair equal_range(const key_type& x) { return force >(m_flat_tree.equal_range(x)); } //! Effects: Equivalent to std::make_pair(this->lower_bound(k), this->upper_bound(k)). //! //! Complexity: Logarithmic std::pair equal_range(const key_type& x) const { return force >(m_flat_tree.equal_range(x)); } //! Effects: Number of elements for which memory has been allocated. //! capacity() is always greater than or equal to size(). //! //! Throws: Nothing. //! //! Complexity: Constant. size_type capacity() const { return m_flat_tree.capacity(); } //! Effects: If n is less than or equal to capacity(), this call has no //! effect. Otherwise, it is a request for allocation of additional memory. //! If the request is successful, then capacity() is greater than or equal to //! n; otherwise, capacity() is unchanged. In either case, size() is unchanged. //! //! Throws: If memory allocation allocation throws or T's copy constructor throws. //! //! Note: If capacity() is less than "count", iterators and references to //! to values might be invalidated. void reserve(size_type count) { m_flat_tree.reserve(count); } /// @cond template friend bool operator== (const flat_map&, const flat_map&); template friend bool operator< (const flat_map&, const flat_map&); /// @endcond }; template inline bool operator==(const flat_map& x, const flat_map& y) { return x.m_flat_tree == y.m_flat_tree; } template inline bool operator<(const flat_map& x, const flat_map& y) { return x.m_flat_tree < y.m_flat_tree; } template inline bool operator!=(const flat_map& x, const flat_map& y) { return !(x == y); } template inline bool operator>(const flat_map& x, const flat_map& y) { return y < x; } template inline bool operator<=(const flat_map& x, const flat_map& y) { return !(y < x); } template inline bool operator>=(const flat_map& x, const flat_map& y) { return !(x < y); } #ifndef BOOST_INTERPROCESS_RVALUE_REFERENCE template inline void swap(flat_map& x, flat_map& y) { x.swap(y); } template inline void swap(const detail::moved_object >& x, flat_map& y) { x.get().swap(y); } template inline void swap(flat_map& x, const detail::moved_object >& y) { x.swap(y.get()); } #else template inline void swap(flat_map&&x, flat_map&&y) { x.swap(y); } #endif /// @cond //!This class is movable template struct is_movable > { enum { value = true }; }; //!has_trivial_destructor_after_move<> == true_type //!specialization for optimizations template struct has_trivial_destructor_after_move > { enum { value = has_trivial_destructor::value && has_trivial_destructor::value }; }; // Forward declaration of operators < and ==, needed for friend declaration. template class flat_multimap; template inline bool operator==(const flat_multimap& x, const flat_multimap& y); template inline bool operator<(const flat_multimap& x, const flat_multimap& y); /// @endcond //! A flat_multimap is a kind of associative container that supports equivalent keys //! (possibly containing multiple copies of the same key value) and provides for //! fast retrieval of values of another type T based on the keys. The flat_multimap //! class supports random-access iterators. //! //! A flat_multimap satisfies all of the requirements of a container and of a reversible //! container and of an associative container. For a //! flat_multimap the key_type is Key and the value_type is std::pair //! (unlike std::multimap which value_type is std::pair<const Key, T>). //! //! Pred is the ordering function for Keys (e.g. std::less). //! //! Alloc is the allocator to allocate the value_types //! (e.g. boost::interprocess:allocator< std::pair). template class flat_multimap { /// @cond private: //This is the real tree stored here. It's based on a movable pair typedef detail::flat_tree, detail::select1st< detail::pair >, Pred, typename Alloc::template rebind >::other> impl_tree_t; typedef detail::flat_tree, detail::select1st< std::pair >, Pred, Alloc> tree_t; // tree_t m_flat_tree; // flat tree representing flat_multimap impl_tree_t m_flat_tree; // flat tree representing flat_map typedef typename impl_tree_t::value_type impl_value_type; typedef typename impl_tree_t::pointer impl_pointer; typedef typename impl_tree_t::const_pointer impl_const_pointer; typedef typename impl_tree_t::reference impl_reference; typedef typename impl_tree_t::const_reference impl_const_reference; typedef typename impl_tree_t::value_compare impl_value_compare; typedef typename impl_tree_t::iterator impl_iterator; typedef typename impl_tree_t::const_iterator impl_const_iterator; typedef typename impl_tree_t::reverse_iterator impl_reverse_iterator; typedef typename impl_tree_t::const_reverse_iterator impl_const_reverse_iterator; typedef typename impl_tree_t::allocator_type impl_allocator_type; #ifndef BOOST_INTERPROCESS_RVALUE_REFERENCE typedef detail::moved_object impl_moved_value_type; #else typedef impl_value_type&& impl_moved_value_type; #endif template static D &force(const S &s) { return *const_cast((reinterpret_cast(&s))); } #ifdef BOOST_INTERPROCESS_RVALUE_REFERENCE template static D &&force(S &&s) { return reinterpret_cast(s); } #endif /// @endcond public: // typedefs: typedef typename tree_t::key_type key_type; typedef typename tree_t::value_type value_type; typedef typename tree_t::pointer pointer; typedef typename tree_t::const_pointer const_pointer; typedef typename tree_t::reference reference; typedef typename tree_t::const_reference const_reference; typedef typename tree_t::value_compare value_compare; typedef T mapped_type; typedef typename tree_t::key_compare key_compare; typedef typename tree_t::iterator iterator; typedef typename tree_t::const_iterator const_iterator; typedef typename tree_t::reverse_iterator reverse_iterator; typedef typename tree_t::const_reverse_iterator const_reverse_iterator; typedef typename tree_t::size_type size_type; typedef typename tree_t::difference_type difference_type; typedef typename tree_t::allocator_type allocator_type; typedef typename tree_t::stored_allocator_type stored_allocator_type; //! Effects: Constructs an empty flat_multimap using the specified comparison //! object and allocator. //! //! Complexity: Constant. explicit flat_multimap(const Pred& comp = Pred(), const allocator_type& a = allocator_type()) : m_flat_tree(comp, force(a)) { } //! Effects: Constructs an empty flat_multimap using the specified comparison object //! and allocator, and inserts elements from the range [first ,last ). //! //! Complexity: Linear in N if the range [first ,last ) is already sorted using //! comp and otherwise N logN, where N is last - first. template flat_multimap(InputIterator first, InputIterator last, const Pred& comp = Pred(), const allocator_type& a = allocator_type()) : m_flat_tree(comp, force(a)) { m_flat_tree.insert_equal(first, last); } //! Effects: Copy constructs a flat_multimap. //! //! Complexity: Linear in x.size(). flat_multimap(const flat_multimap& x) : m_flat_tree(x.m_flat_tree) { } //! Effects: Move constructs a flat_multimap. Constructs *this using x's resources. //! //! Complexity: Construct. //! //! Postcondition: x is emptied. #ifndef BOOST_INTERPROCESS_RVALUE_REFERENCE flat_multimap(const detail::moved_object >& x) : m_flat_tree(move(x.get().m_flat_tree)) { } #else flat_multimap(flat_multimap && x) : m_flat_tree(move(x.m_flat_tree)) { } #endif //! Effects: Makes *this a copy of x. //! //! Complexity: Linear in x.size(). flat_multimap& operator=(const flat_multimap& x) { m_flat_tree = x.m_flat_tree; return *this; } //! Effects: this->swap(x.get()). //! //! Complexity: Constant. #ifndef BOOST_INTERPROCESS_RVALUE_REFERENCE flat_multimap& operator=(const detail::moved_object >& mx) { m_flat_tree = move(mx.get().m_flat_tree); return *this; } #else flat_multimap& operator=(flat_multimap && mx) { m_flat_tree = move(mx.m_flat_tree); return *this; } #endif //! Effects: Returns the comparison object out //! of which a was constructed. //! //! Complexity: Constant. key_compare key_comp() const { return force(m_flat_tree.key_comp()); } //! Effects: Returns an object of value_compare constructed out //! of the comparison object. //! //! Complexity: Constant. value_compare value_comp() const { return value_compare(force(m_flat_tree.key_comp())); } //! Effects: Returns a copy of the Allocator that //! was passed to the object’s constructor. //! //! Complexity: Constant. allocator_type get_allocator() const { return force(m_flat_tree.get_allocator()); } const stored_allocator_type &get_stored_allocator() const { return force(m_flat_tree.get_stored_allocator()); } stored_allocator_type &get_stored_allocator() { return force(m_flat_tree.get_stored_allocator()); } //! Effects: Returns an iterator to the first element contained in the container. //! //! Throws: Nothing. //! //! Complexity: Constant. iterator begin() { return force(m_flat_tree.begin()); } //! Effects: Returns a const_iterator to the first element contained in the container. //! //! Throws: Nothing. //! //! Complexity: Constant. const_iterator begin() const { return force(m_flat_tree.begin()); } //! Effects: Returns an iterator to the end of the container. //! //! Throws: Nothing. //! //! Complexity: Constant. iterator end() { return force(m_flat_tree.end()); } //! Effects: Returns a const_iterator to the end of the container. //! //! Throws: Nothing. //! //! Complexity: Constant. const_iterator end() const { return force(m_flat_tree.end()); } //! Effects: Returns a reverse_iterator pointing to the beginning //! of the reversed container. //! //! Throws: Nothing. //! //! Complexity: Constant. reverse_iterator rbegin() { return force(m_flat_tree.rbegin()); } //! Effects: Returns a const_reverse_iterator pointing to the beginning //! of the reversed container. //! //! Throws: Nothing. //! //! Complexity: Constant. const_reverse_iterator rbegin() const { return force(m_flat_tree.rbegin()); } //! Effects: Returns a reverse_iterator pointing to the end //! of the reversed container. //! //! Throws: Nothing. //! //! Complexity: Constant. reverse_iterator rend() { return force(m_flat_tree.rend()); } //! Effects: Returns a const_reverse_iterator pointing to the end //! of the reversed container. //! //! Throws: Nothing. //! //! Complexity: Constant. const_reverse_iterator rend() const { return force(m_flat_tree.rend()); } //! Effects: Returns true if the container contains no elements. //! //! Throws: Nothing. //! //! Complexity: Constant. bool empty() const { return m_flat_tree.empty(); } //! Effects: Returns the number of the elements contained in the container. //! //! Throws: Nothing. //! //! Complexity: Constant. size_type size() const { return m_flat_tree.size(); } //! Effects: Returns the largest possible size of the container. //! //! Throws: Nothing. //! //! Complexity: Constant. size_type max_size() const { return m_flat_tree.max_size(); } //! Effects: Swaps the contents of *this and x. //! If this->allocator_type() != x.allocator_type() allocators are also swapped. //! //! Throws: Nothing. //! //! Complexity: Constant. void swap(flat_multimap& x) { m_flat_tree.swap(x.m_flat_tree); } //! Effects: Swaps the contents of *this and x. //! If this->allocator_type() != x.allocator_type() allocators are also swapped. //! //! Throws: Nothing. //! //! Complexity: Constant. #ifndef BOOST_INTERPROCESS_RVALUE_REFERENCE void swap(const detail::moved_object >& x) { m_flat_tree.swap(x.get().m_flat_tree); } #else void swap(flat_multimap && x) { m_flat_tree.swap(x.m_flat_tree); } #endif //! Effects: Inserts x and returns the iterator pointing to the //! newly inserted element. //! //! Complexity: Logarithmic search time plus linear insertion //! to the elements with bigger keys than x. //! //! Note: If an element it's inserted it might invalidate elements. iterator insert(const value_type& x) { return force(m_flat_tree.insert_equal(force(x))); } //! Effects: Inserts a new value move-constructed from x and returns //! the iterator pointing to the newly inserted element. //! //! Complexity: Logarithmic search time plus linear insertion //! to the elements with bigger keys than x. //! //! Note: If an element it's inserted it might invalidate elements. #ifndef BOOST_INTERPROCESS_RVALUE_REFERENCE iterator insert(const detail::moved_object& x) { return force(m_flat_tree.insert_equal(force(x))); } #else iterator insert(value_type &&x) { return force(m_flat_tree.insert_equal(force(move(x)))); } #endif //! Effects: Inserts a copy of x in the container. //! p is a hint pointing to where the insert should start to search. //! //! Returns: An iterator pointing to the element with key equivalent //! to the key of x. //! //! Complexity: Logarithmic search time (constant time if the value //! is to be inserted before p) plus linear insertion //! to the elements with bigger keys than x. //! //! Note: If an element it's inserted it might invalidate elements. iterator insert(iterator position, const value_type& x) { return force(m_flat_tree.insert_equal(force(position), force(x))); } //! Effects: Inserts a value move constructed from x in the container. //! p is a hint pointing to where the insert should start to search. //! //! Returns: An iterator pointing to the element with key equivalent //! to the key of x. //! //! Complexity: Logarithmic search time (constant time if the value //! is to be inserted before p) plus linear insertion //! to the elements with bigger keys than x. //! //! Note: If an element it's inserted it might invalidate elements. #ifndef BOOST_INTERPROCESS_RVALUE_REFERENCE iterator insert(iterator position, const detail::moved_object& x) { return force(m_flat_tree.insert_equal(force(position), force(x))); } #else iterator insert(iterator position, value_type &&x) { return force(m_flat_tree.insert_equal(force(position), force(move(x)))); } #endif //! Requires: i, j are not iterators into *this. //! //! Effects: inserts each element from the range [i,j) . //! //! Complexity: N log(size()+N) (N is the distance from i to j) //! search time plus N*size() insertion time. //! //! Note: If an element it's inserted it might invalidate elements. template void insert(InputIterator first, InputIterator last) { m_flat_tree.insert_equal(first, last); } //! Effects: Erases the element pointed to by position. //! //! Returns: Returns an iterator pointing to the element immediately //! following q prior to the element being erased. If no such element exists, //! returns end(). //! //! Complexity: Linear to the elements with keys bigger than position //! //! Note: Invalidates elements with keys //! not less than the erased element. void erase(const_iterator position) { m_flat_tree.erase(force(position)); } //! Effects: Erases all elements in the container with key equivalent to x. //! //! Returns: Returns the number of erased elements. //! //! Complexity: Logarithmic search time plus erasure time //! linear to the elements with bigger keys. size_type erase(const key_type& x) { return m_flat_tree.erase(x); } //! Effects: Erases all the elements in the range [first, last). //! //! Returns: Returns last. //! //! Complexity: size()*N where N is the distance from first to last. //! //! Complexity: Logarithmic search time plus erasure time //! linear to the elements with bigger keys. void erase(const_iterator first, const_iterator last) { m_flat_tree.erase(force(first), force(last)); } //! Effects: erase(a.begin(),a.end()). //! //! Postcondition: size() == 0. //! //! Complexity: linear in size(). void clear() { m_flat_tree.clear(); } //! Effects: Tries to deallocate the excess of memory created // with previous allocations. The size of the vector is unchanged //! //! Throws: If memory allocation throws, or T's copy constructor throws. //! //! Complexity: Linear to size(). void shrink_to_fit() { m_flat_tree.shrink_to_fit(); } //! Returns: An iterator pointing to an element with the key //! equivalent to x, or end() if such an element is not found. //! //! Complexity: Logarithmic. iterator find(const key_type& x) { return force(m_flat_tree.find(x)); } //! Returns: An const_iterator pointing to an element with the key //! equivalent to x, or end() if such an element is not found. //! //! Complexity: Logarithmic. const_iterator find(const key_type& x) const { return force(m_flat_tree.find(x)); } //! Returns: The number of elements with key equivalent to x. //! //! Complexity: log(size())+count(k) size_type count(const key_type& x) const { return m_flat_tree.count(x); } //! Returns: An iterator pointing to the first element with key not less //! than k, or a.end() if such an element is not found. //! //! Complexity: Logarithmic iterator lower_bound(const key_type& x) {return force(m_flat_tree.lower_bound(x)); } //! Returns: A const iterator pointing to the first element with key //! not less than k, or a.end() if such an element is not found. //! //! Complexity: Logarithmic const_iterator lower_bound(const key_type& x) const { return force(m_flat_tree.lower_bound(x)); } //! Returns: An iterator pointing to the first element with key not less //! than x, or end() if such an element is not found. //! //! Complexity: Logarithmic iterator upper_bound(const key_type& x) {return force(m_flat_tree.upper_bound(x)); } //! Returns: A const iterator pointing to the first element with key //! not less than x, or end() if such an element is not found. //! //! Complexity: Logarithmic const_iterator upper_bound(const key_type& x) const { return force(m_flat_tree.upper_bound(x)); } //! Effects: Equivalent to std::make_pair(this->lower_bound(k), this->upper_bound(k)). //! //! Complexity: Logarithmic std::pair equal_range(const key_type& x) { return force >(m_flat_tree.equal_range(x)); } //! Effects: Equivalent to std::make_pair(this->lower_bound(k), this->upper_bound(k)). //! //! Complexity: Logarithmic std::pair equal_range(const key_type& x) const { return force >(m_flat_tree.equal_range(x)); } //! Effects: Number of elements for which memory has been allocated. //! capacity() is always greater than or equal to size(). //! //! Throws: Nothing. //! //! Complexity: Constant. size_type capacity() const { return m_flat_tree.capacity(); } //! Effects: If n is less than or equal to capacity(), this call has no //! effect. Otherwise, it is a request for allocation of additional memory. //! If the request is successful, then capacity() is greater than or equal to //! n; otherwise, capacity() is unchanged. In either case, size() is unchanged. //! //! Throws: If memory allocation allocation throws or T's copy constructor throws. //! //! Note: If capacity() is less than "count", iterators and references to //! to values might be invalidated. void reserve(size_type count) { m_flat_tree.reserve(count); } /// @cond template friend bool operator== (const flat_multimap& x, const flat_multimap& y); template friend bool operator< (const flat_multimap& x, const flat_multimap& y); /// @endcond }; template inline bool operator==(const flat_multimap& x, const flat_multimap& y) { return x.m_flat_tree == y.m_flat_tree; } template inline bool operator<(const flat_multimap& x, const flat_multimap& y) { return x.m_flat_tree < y.m_flat_tree; } template inline bool operator!=(const flat_multimap& x, const flat_multimap& y) { return !(x == y); } template inline bool operator>(const flat_multimap& x, const flat_multimap& y) { return y < x; } template inline bool operator<=(const flat_multimap& x, const flat_multimap& y) { return !(y < x); } template inline bool operator>=(const flat_multimap& x, const flat_multimap& y) { return !(x < y); } #ifndef BOOST_INTERPROCESS_RVALUE_REFERENCE template inline void swap(flat_multimap& x, flat_multimap& y) { x.swap(y); } template inline void swap(const detail::moved_object >& x, flat_multimap& y) { x.get().swap(y); } template inline void swap(flat_multimap& x, const detail::moved_object > & y) { x.swap(y.get()); } #else template inline void swap(flat_multimap&&x, flat_multimap&&y) { x.swap(y); } #endif /// @cond //!This class is movable template struct is_movable > { enum { value = true }; }; //!has_trivial_destructor_after_move<> == true_type //!specialization for optimizations template struct has_trivial_destructor_after_move > { enum { value = has_trivial_destructor::value && has_trivial_destructor::value }; }; /// @endcond }} //namespace boost { namespace interprocess { #include #endif /* BOOST_INTERPROCESS_FLAT_MAP_HPP */