////////////////////////////////////////////////////////////////////////////// // // (C) Copyright Ion Gaztanaga 2005-2008. Distributed under the Boost // Software License, Version 1.0. (See accompanying file // LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt) // // See http://www.boost.org/libs/interprocess for documentation. // ////////////////////////////////////////////////////////////////////////////// // // This file comes from SGI's stl_list.h file. Modified by Ion Gaztanaga 2004 // Renaming, isolating and porting to generic algorithms. Pointer typedef // set to allocator::pointer to allow placing it in shared memory. // /////////////////////////////////////////////////////////////////////////////// /* * * Copyright (c) 1994 * Hewlett-Packard Company * * Permission to use, copy, modify, distribute and sell this software * and its documentation for any purpose is hereby granted without fee, * provided that the above copyright notice appear in all copies and * that both that copyright notice and this permission notice appear * in supporting documentation. Hewlett-Packard Company makes no * representations about the suitability of this software for any * purpose. It is provided "as is" without express or implied warranty. * * * Copyright (c) 1996 * Silicon Graphics Computer Systems, Inc. * * Permission to use, copy, modify, distribute and sell this software * and its documentation for any purpose is hereby granted without fee, * provided that the above copyright notice appear in all copies and * that both that copyright notice and this permission notice appear * in supporting documentation. Silicon Graphics makes no * representations about the suitability of this software for any * purpose. It is provided "as is" without express or implied warranty. * */ #ifndef BOOST_INTERPROCESS_LIST_HPP_ #define BOOST_INTERPROCESS_LIST_HPP_ #if (defined _MSC_VER) && (_MSC_VER >= 1200) # pragma once #endif #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include namespace boost { namespace interprocess { /// @cond namespace detail { template struct list_node : public bi::make_list_base_hook , bi::link_mode >::type { typedef typename bi::make_list_base_hook , bi::link_mode >::type hook_type; list_node() : m_data() {} #ifndef BOOST_INTERPROCESS_RVALUE_REFERENCE template list_node(const Convertible &conv) : m_data(conv) {} #else template list_node(Convertible &&conv) : m_data(forward(conv)) {} #endif T m_data; }; template struct intrusive_list_type { typedef typename A::value_type value_type; typedef typename detail::pointer_to_other ::type void_pointer; typedef typename detail::list_node node_type; typedef typename bi::make_list < node_type , bi::base_hook , bi::constant_time_size , bi::size_type >::type container_type; typedef container_type type ; }; } //namespace detail { /// @endcond //! A list is a doubly linked list. That is, it is a Sequence that supports both //! forward and backward traversal, and (amortized) constant time insertion and //! removal of elements at the beginning or the end, or in the middle. Lists have //! the important property that insertion and splicing do not invalidate iterators //! to list elements, and that even removal invalidates only the iterators that point //! to the elements that are removed. The ordering of iterators may be changed //! (that is, list::iterator might have a different predecessor or successor //! after a list operation than it did before), but the iterators themselves will //! not be invalidated or made to point to different elements unless that invalidation //! or mutation is explicit. template class list : protected detail::node_alloc_holder ::type> { /// @cond typedef typename detail::intrusive_list_type::type Icont; typedef detail::node_alloc_holder AllocHolder; typedef typename AllocHolder::NodePtr NodePtr; typedef list ThisType; typedef typename AllocHolder::NodeAlloc NodeAlloc; typedef typename AllocHolder::ValAlloc ValAlloc; typedef typename AllocHolder::Node Node; typedef detail::allocator_destroyer Destroyer; typedef typename AllocHolder::allocator_v1 allocator_v1; typedef typename AllocHolder::allocator_v2 allocator_v2; typedef typename AllocHolder::alloc_version alloc_version; class equal_to_value { typedef typename AllocHolder::value_type value_type; const value_type &t_; public: equal_to_value(const value_type &t) : t_(t) {} bool operator()(const value_type &t)const { return t_ == t; } }; template struct ValueCompareToNodeCompare : Pred { ValueCompareToNodeCompare(Pred pred) : Pred(pred) {} bool operator()(const Node &a, const Node &b) const { return static_cast(*this)(a.m_data, b.m_data); } bool operator()(const Node &a) const { return static_cast(*this)(a.m_data); } }; /// @endcond public: //! The type of object, T, stored in the list typedef T value_type; //! Pointer to T typedef typename A::pointer pointer; //! Const pointer to T typedef typename A::const_pointer const_pointer; //! Reference to T typedef typename A::reference reference; //! Const reference to T typedef typename A::const_reference const_reference; //! An unsigned integral type typedef typename A::size_type size_type; //! A signed integral type typedef typename A::difference_type difference_type; //! The allocator type typedef A allocator_type; //! The stored allocator type typedef NodeAlloc stored_allocator_type; /// @cond private: typedef difference_type list_difference_type; typedef pointer list_pointer; typedef const_pointer list_const_pointer; typedef reference list_reference; typedef const_reference list_const_reference; /// @endcond public: //! Const iterator used to iterate through a list. class const_iterator /// @cond : public std::iterator { protected: typename Icont::iterator m_it; explicit const_iterator(typename Icont::iterator it) : m_it(it){} void prot_incr() { ++m_it; } void prot_decr() { --m_it; } private: typename Icont::iterator get() { return this->m_it; } public: friend class list; typedef list_difference_type difference_type; //Constructors const_iterator() : m_it() {} //Pointer like operators const_reference operator*() const { return m_it->m_data; } const_pointer operator->() const { return const_pointer(&m_it->m_data); } //Increment / Decrement const_iterator& operator++() { prot_incr(); return *this; } const_iterator operator++(int) { typename Icont::iterator tmp = m_it; ++*this; return const_iterator(tmp); } const_iterator& operator--() { prot_decr(); return *this; } const_iterator operator--(int) { typename Icont::iterator tmp = m_it; --*this; return const_iterator(tmp); } //Comparison operators bool operator== (const const_iterator& r) const { return m_it == r.m_it; } bool operator!= (const const_iterator& r) const { return m_it != r.m_it; } } /// @endcond ; //! Iterator used to iterate through a list class iterator /// @cond : public const_iterator { private: explicit iterator(typename Icont::iterator it) : const_iterator(it) {} typename Icont::iterator get() { return this->m_it; } public: friend class list; typedef list_pointer pointer; typedef list_reference reference; //Constructors iterator(){} //Pointer like operators reference operator*() const { return this->m_it->m_data; } pointer operator->() const { return pointer(&this->m_it->m_data); } //Increment / Decrement iterator& operator++() { this->prot_incr(); return *this; } iterator operator++(int) { typename Icont::iterator tmp = this->m_it; ++*this; return iterator(tmp); } iterator& operator--() { this->prot_decr(); return *this; } iterator operator--(int) { iterator tmp = *this; --*this; return tmp; } } /// @endcond ; //! Iterator used to iterate backwards through a list. typedef std::reverse_iterator reverse_iterator; //! Const iterator used to iterate backwards through a list. typedef std::reverse_iterator const_reverse_iterator; //! Effects: Constructs a list taking the allocator as parameter. //! //! Throws: If allocator_type's copy constructor throws. //! //! Complexity: Constant. explicit list(const allocator_type &a = A()) : AllocHolder(a) {} // list(size_type n) // : AllocHolder(move(allocator_type())) // { this->resize(n); } //! Effects: Constructs a list that will use a copy of allocator a //! and inserts n copies of value. //! //! Throws: If allocator_type's default constructor or copy constructor //! throws or T's default or copy constructor throws. //! //! Complexity: Linear to n. list(size_type n, const T& value = T(), const A& a = A()) : AllocHolder(a) { this->insert(begin(), n, value); } //! Effects: Copy constructs a list. //! //! Postcondition: x == *this. //! //! Throws: If allocator_type's default constructor or copy constructor throws. //! //! Complexity: Linear to the elements x contains. list(const list& x) : AllocHolder(x) { this->insert(begin(), x.begin(), x.end()); } //! Effects: Move constructor. Moves mx's resources to *this. //! //! Throws: If allocator_type's default constructor throws. //! //! Complexity: Constant. #ifndef BOOST_INTERPROCESS_RVALUE_REFERENCE list(const detail::moved_object &x) : AllocHolder(move((AllocHolder&)x.get())) {} #else list(list &&x) : AllocHolder(move((AllocHolder&)x)) {} #endif //! Effects: Constructs a list that will use a copy of allocator a //! and inserts a copy of the range [first, last) in the list. //! //! Throws: If allocator_type's default constructor or copy constructor //! throws or T's constructor taking an dereferenced InIt throws. //! //! Complexity: Linear to the range [first, last). template list(InpIt first, InpIt last, const A &a = A()) : AllocHolder(a) { insert(begin(), first, last); } //! Effects: Destroys the list. All stored values are destroyed //! and used memory is deallocated. //! //! Throws: Nothing. //! //! Complexity: Linear to the number of elements. ~list() { this->clear(); } //! Effects: Returns a copy of the internal allocator. //! //! Throws: If allocator's copy constructor throws. //! //! Complexity: Constant. allocator_type get_allocator() const { return allocator_type(this->node_alloc()); } const stored_allocator_type &get_stored_allocator() const { return this->node_alloc(); } stored_allocator_type &get_stored_allocator() { return this->node_alloc(); } //! Effects: Erases all the elements of the list. //! //! Throws: Nothing. //! //! Complexity: Linear to the number of elements in the list. void clear() { AllocHolder::clear(alloc_version()); } //! Effects: Returns an iterator to the first element contained in the list. //! //! Throws: Nothing. //! //! Complexity: Constant. iterator begin() { return iterator(this->icont().begin()); } //! Effects: Returns a const_iterator to the first element contained in the list. //! //! Throws: Nothing. //! //! Complexity: Constant. const_iterator begin() const { return const_iterator(this->non_const_icont().begin()); } //! Effects: Returns an iterator to the end of the list. //! //! Throws: Nothing. //! //! Complexity: Constant. iterator end() { return iterator(this->icont().end()); } //! Effects: Returns a const_iterator to the end of the list. //! //! Throws: Nothing. //! //! Complexity: Constant. const_iterator end() const { return const_iterator(this->non_const_icont().end()); } //! Effects: Returns a reverse_iterator pointing to the beginning //! of the reversed list. //! //! Throws: Nothing. //! //! Complexity: Constant. reverse_iterator rbegin() { return reverse_iterator(end()); } //! Effects: Returns a const_reverse_iterator pointing to the beginning //! of the reversed list. //! //! Throws: Nothing. //! //! Complexity: Constant. const_reverse_iterator rbegin() const { return const_reverse_iterator(end()); } //! Effects: Returns a reverse_iterator pointing to the end //! of the reversed list. //! //! Throws: Nothing. //! //! Complexity: Constant. reverse_iterator rend() { return reverse_iterator(begin()); } //! Effects: Returns a const_reverse_iterator pointing to the end //! of the reversed list. //! //! Throws: Nothing. //! //! Complexity: Constant. const_reverse_iterator rend() const { return const_reverse_iterator(begin()); } //! Effects: Returns true if the list contains no elements. //! //! Throws: Nothing. //! //! Complexity: Constant. bool empty() const { return !this->size(); } //! Effects: Returns the number of the elements contained in the list. //! //! Throws: Nothing. //! //! Complexity: Constant. size_type size() const { return this->icont().size(); } //! Effects: Returns the largest possible size of the list. //! //! Throws: Nothing. //! //! Complexity: Constant. size_type max_size() const { return AllocHolder::max_size(); } //! Effects: Inserts a copy of t in the beginning of the list. //! //! Throws: If memory allocation throws or //! T's copy constructor throws. //! //! Complexity: Amortized constant time. void push_front(const T& x) { this->insert(this->begin(), x); } //! Effects: Constructs a new element in the beginning of the list //! and moves the resources of t to this new element. //! //! Throws: If memory allocation throws. //! //! Complexity: Amortized constant time. #ifndef BOOST_INTERPROCESS_RVALUE_REFERENCE void push_front(const detail::moved_object& x) { this->insert(this->begin(), x); } #else void push_front(T &&x) { this->insert(this->begin(), move(x)); } #endif //! Effects: Removes the last element from the list. //! //! Throws: Nothing. //! //! Complexity: Amortized constant time. void push_back (const T& x) { this->insert(this->end(), x); } //! Effects: Removes the first element from the list. //! //! Throws: Nothing. //! //! Complexity: Amortized constant time. #ifndef BOOST_INTERPROCESS_RVALUE_REFERENCE void push_back (const detail::moved_object& x) { this->insert(this->end(), x); } #else void push_back (T &&x) { this->insert(this->end(), move(x)); } #endif //! Effects: Removes the first element from the list. //! //! Throws: Nothing. //! //! Complexity: Amortized constant time. void pop_front() { this->erase(this->begin()); } //! Effects: Removes the last element from the list. //! //! Throws: Nothing. //! //! Complexity: Amortized constant time. void pop_back() { iterator tmp = this->end(); this->erase(--tmp); } //! Requires: !empty() //! //! Effects: Returns a reference to the first element //! from the beginning of the container. //! //! Throws: Nothing. //! //! Complexity: Constant. reference front() { return *this->begin(); } //! Requires: !empty() //! //! Effects: Returns a const reference to the first element //! from the beginning of the container. //! //! Throws: Nothing. //! //! Complexity: Constant. const_reference front() const { return *this->begin(); } //! Requires: !empty() //! //! Effects: Returns a reference to the first element //! from the beginning of the container. //! //! Throws: Nothing. //! //! Complexity: Constant. reference back() { return *(--this->end()); } //! Requires: !empty() //! //! Effects: Returns a const reference to the first element //! from the beginning of the container. //! //! Throws: Nothing. //! //! Complexity: Constant. const_reference back() const { return *(--this->end()); } //! Effects: Inserts or erases elements at the end such that //! the size becomes n. New elements are copy constructed from x. //! //! Throws: If memory allocation throws, or T's copy constructor throws. //! //! Complexity: Linear to the difference between size() and new_size. void resize(size_type new_size, const T& x) { iterator i = this->begin(), iend = this->end(); size_type len = this->size(); if(len > new_size){ size_type to_erase = len - new_size; while(to_erase--){ --iend; } this->erase(iend, this->end()); } else{ this->priv_create_and_insert_nodes(iend, new_size - len, x); } } //! Effects: Inserts or erases elements at the end such that //! the size becomes n. New elements are default constructed. //! //! Throws: If memory allocation throws, or T's copy constructor throws. //! //! Complexity: Linear to the difference between size() and new_size. void resize(size_type new_size) { iterator i = this->begin(), iend = this->end(); size_type len = this->size(); if(len > new_size){ size_type to_erase = len - new_size; while(to_erase--){ --iend; } this->erase(iend, this->end()); } else{ this->priv_create_and_insert_nodes(this->end(), new_size - len); } } //! Effects: Swaps the contents of *this and x. //! If this->allocator_type() != x.allocator_type() //! allocators are also swapped. //! //! Throws: Nothing. //! //! Complexity: Constant. void swap(ThisType& x) { AllocHolder::swap(x); } //! Effects: Swaps the contents of *this and x. //! If this->allocator_type() != x.allocator_type() //! allocators are also swapped. //! //! Throws: Nothing. //! //! Complexity: Constant. //void swap(const detail::moved_object& x) //{ this->swap(x.get()); } //! Effects: Makes *this contain the same elements as x. //! //! Postcondition: this->size() == x.size(). *this contains a copy //! of each of x's elements. //! //! Throws: If memory allocation throws or T's copy constructor throws. //! //! Complexity: Linear to the number of elements in x. ThisType& operator=(const ThisType& x) { if (this != &x) { this->assign(x.begin(), x.end()); } return *this; } //! Effects: Move assignment. All mx's values are transferred to *this. //! //! Postcondition: x.empty(). *this contains a the elements x had //! before the function. //! //! Throws: If allocator_type's copy constructor throws. //! //! Complexity: Constant. #ifndef BOOST_INTERPROCESS_RVALUE_REFERENCE ThisType& operator=(const detail::moved_object& mx) { this->clear(); this->swap(mx.get()); return *this; } #else ThisType& operator=(ThisType &&mx) { this->clear(); this->swap(mx); return *this; } #endif //! Requires: p must be a valid iterator of *this. //! //! Effects: Inserts n copies of x before p. //! //! Throws: If memory allocation throws or T's copy constructor throws. //! //! Complexity: Linear to n. void insert(iterator p, size_type n, const T& x) { this->priv_create_and_insert_nodes(p, n, x); } //! Requires: p must be a valid iterator of *this. //! //! Effects: Insert a copy of the [first, last) range before p. //! //! Throws: If memory allocation throws, T's constructor from a //! dereferenced InpIt throws. //! //! Complexity: Linear to std::distance [first, last). template void insert(iterator p, InpIt first, InpIt last) { const bool aux_boolean = detail::is_convertible::value; typedef detail::bool_ Result; this->priv_insert_dispatch(p, first, last, Result()); } //! Requires: p must be a valid iterator of *this. //! //! Effects: Insert a copy of x before p. //! //! Throws: If memory allocation throws or x's copy constructor throws. //! //! Complexity: Amortized constant time. iterator insert(iterator p, const T& x) { NodePtr tmp = AllocHolder::create_node(x); return iterator(this->icont().insert(p.get(), *tmp)); } //! Requires: p must be a valid iterator of *this. //! //! Effects: Insert a new element before p with mx's resources. //! //! Throws: If memory allocation throws. //! //! Complexity: Amortized constant time. #ifndef BOOST_INTERPROCESS_RVALUE_REFERENCE iterator insert(iterator p, const detail::moved_object& x) { NodePtr tmp = AllocHolder::create_node(x); return iterator(this->icont().insert(p.get(), *tmp)); } #else iterator insert(iterator p, T &&x) { NodePtr tmp = AllocHolder::create_node(move(x)); return iterator(this->icont().insert(p.get(), *tmp)); } #endif //! Requires: p must be a valid iterator of *this. //! //! Effects: Erases the element at p p. //! //! Throws: Nothing. //! //! Complexity: Amortized constant time. iterator erase(iterator p) { return iterator(this->icont().erase_and_dispose(p.get(), Destroyer(this->node_alloc()))); } //! Requires: first and last must be valid iterator to elements in *this. //! //! Effects: Erases the elements pointed by [first, last). //! //! Throws: Nothing. //! //! Complexity: Linear to the distance between first and last. iterator erase(iterator first, iterator last) { return iterator(AllocHolder::erase_range(first.get(), last.get(), alloc_version())); } //! Effects: Assigns the n copies of val to *this. //! //! Throws: If memory allocation throws or T's copy constructor throws. //! //! Complexity: Linear to n. void assign(size_type n, const T& val) { this->priv_fill_assign(n, val); } //! Effects: Assigns the the range [first, last) to *this. //! //! Throws: If memory allocation throws or //! T's constructor from dereferencing InpIt throws. //! //! Complexity: Linear to n. template void assign(InpIt first, InpIt last) { const bool aux_boolean = detail::is_convertible::value; typedef detail::bool_ Result; this->priv_assign_dispatch(first, last, Result()); } //! Requires: p must point to an element contained //! by the list. x != *this //! //! Effects: Transfers all the elements of list x to this list, before the //! the element pointed by p. No destructors or copy constructors are called. //! //! Throws: std::runtime_error if this' allocator and x's allocator //! are not equal. //! //! Complexity: Constant. //! //! Note: Iterators of values obtained from list x now point to elements of //! this list. Iterators of this list and all the references are not invalidated. void splice(iterator p, ThisType& x) { if((NodeAlloc&)*this == (NodeAlloc&)x){ this->icont().splice(p.get(), x.icont()); } else{ throw std::runtime_error("list::splice called with unequal allocators"); } } // void splice(iterator p, const detail::moved_object& x) // { this->splice(p, x.get()); } //! Requires: p must point to an element contained //! by this list. i must point to an element contained in list x. //! //! Effects: Transfers the value pointed by i, from list x to this list, //! before the the element pointed by p. No destructors or copy constructors are called. //! If p == i or p == ++i, this function is a null operation. //! //! Throws: std::runtime_error if this' allocator and x's allocator //! are not equal. //! //! Complexity: Constant. //! //! Note: Iterators of values obtained from list x now point to elements of this //! list. Iterators of this list and all the references are not invalidated. void splice(iterator p, ThisType &x, iterator i) { if((NodeAlloc&)*this == (NodeAlloc&)x){ this->icont().splice(p.get(), x.icont(), i.get()); } else{ throw std::runtime_error("list::splice called with unequal allocators"); } } // void splice(iterator p, const detail::moved_object &x, iterator i) // { this->splice(p, x.get(), i); } //! Requires: p must point to an element contained //! by this list. first and last must point to elements contained in list x. //! //! Effects: Transfers the range pointed by first and last from list x to this list, //! before the the element pointed by p. No destructors or copy constructors are called. //! //! Throws: std::runtime_error if this' allocator and x's allocator //! are not equal. //! //! Complexity: Linear to the number of elements transferred. //! //! Note: Iterators of values obtained from list x now point to elements of this //! list. Iterators of this list and all the references are not invalidated. void splice(iterator p, ThisType &x, iterator first, iterator last) { if((NodeAlloc&)*this == (NodeAlloc&)x){ this->icont().splice(p.get(), x.icont(), first.get(), last.get()); } else{ throw std::runtime_error("list::splice called with unequal allocators"); } } // void splice(iterator p, detail::moved_object &x, iterator first, iterator last) // { return this->splice(p, x.get(), first, last); } //! Requires: p must point to an element contained //! by this list. first and last must point to elements contained in list x. //! n == std::distance(first, last) //! //! Effects: Transfers the range pointed by first and last from list x to this list, //! before the the element pointed by p. No destructors or copy constructors are called. //! //! Throws: std::runtime_error if this' allocator and x's allocator //! are not equal. //! //! Complexity: Constant. //! //! Note: Iterators of values obtained from list x now point to elements of this //! list. Iterators of this list and all the references are not invalidated. void splice(iterator p, ThisType &x, iterator first, iterator last, size_type n) { if((NodeAlloc&)*this == (NodeAlloc&)x){ this->icont().splice(p.get(), x.icont(), first.get(), last.get(), n); } else{ throw std::runtime_error("list::splice called with unequal allocators"); } } // void splice(iterator p, detail::moved_object &x, iterator first, iterator last, size_type n) // { return this->splice(p, x.get(), first, last, n); } //! Effects: Reverses the order of elements in the list. //! //! Throws: Nothing. //! //! Complexity: This function is linear time. //! //! Note: Iterators and references are not invalidated void reverse() { this->icont().reverse(); } //! Effects: Removes all the elements that compare equal to value. //! //! Throws: Nothing. //! //! Complexity: Linear time. It performs exactly size() comparisons for equality. //! //! Note: The relative order of elements that are not removed is unchanged, //! and iterators to elements that are not removed remain valid. void remove(const T& value) { remove_if(equal_to_value(value)); } //! Effects: Removes all the elements for which a specified //! predicate is satisfied. //! //! Throws: If pred throws. //! //! Complexity: Linear time. It performs exactly size() calls to the predicate. //! //! Note: The relative order of elements that are not removed is unchanged, //! and iterators to elements that are not removed remain valid. template void remove_if(Pred pred) { typedef ValueCompareToNodeCompare Predicate; this->icont().remove_and_dispose_if(Predicate(pred), Destroyer(this->node_alloc())); } //! Effects: Removes adjacent duplicate elements or adjacent //! elements that are equal from the list. //! //! Throws: Nothing. //! //! Complexity: Linear time (size()-1 comparisons calls to pred()). //! //! Note: The relative order of elements that are not removed is unchanged, //! and iterators to elements that are not removed remain valid. void unique() { this->unique(value_equal()); } //! Effects: Removes adjacent duplicate elements or adjacent //! elements that satisfy some binary predicate from the list. //! //! Throws: If pred throws. //! //! Complexity: Linear time (size()-1 comparisons equality comparisons). //! //! Note: The relative order of elements that are not removed is unchanged, //! and iterators to elements that are not removed remain valid. template void unique(BinaryPredicate binary_pred) { typedef ValueCompareToNodeCompare Predicate; this->icont().unique_and_dispose(Predicate(binary_pred), Destroyer(this->node_alloc())); } //! Requires: The lists x and *this must be distinct. //! //! Effects: This function removes all of x's elements and inserts them //! in order into *this according to std::less. The merge is stable; //! that is, if an element from *this is equivalent to one from x, then the element //! from *this will precede the one from x. //! //! Throws: Nothing. //! //! Complexity: This function is linear time: it performs at most //! size() + x.size() - 1 comparisons. void merge(list& x) { this->merge(x, value_less()); } //! Effects: This function removes all of moved mx's elements and inserts them //! in order into *this according to std::less. The merge is stable; //! that is, if an element from *this is equivalent to one from x, then the element //! from *this will precede the one from x. //! //! Throws: Nothing. //! //! Complexity: This function is linear time: it performs at most //! size() + x.size() - 1 comparisons. //! //! Note: Iterators and references to *this are not invalidated. //void merge(const detail::moved_object >& x) //{ this->merge(x.get()); } //! Requires: p must be a comparison function that induces a strict weak //! ordering and both *this and x must be sorted according to that ordering //! The lists x and *this must be distinct. //! //! Effects: This function removes all of x's elements and inserts them //! in order into *this. The merge is stable; that is, if an element from *this is //! equivalent to one from x, then the element from *this will precede the one from x. //! //! Throws: Nothing. //! //! Complexity: This function is linear time: it performs at most //! size() + x.size() - 1 comparisons. //! //! Note: Iterators and references to *this are not invalidated. template void merge(list& x, StrictWeakOrdering comp) { if((NodeAlloc&)*this == (NodeAlloc&)x){ this->icont().merge(x.icont(), ValueCompareToNodeCompare(comp)); } else{ throw std::runtime_error("list::merge called with unequal allocators"); } } //! Requires: p must be a comparison function that induces a strict weak //! ordering and both *this and x must be sorted according to that ordering //! The lists x and *this must be distinct. //! //! Effects: This function removes all of moved mx's elements and inserts them //! in order into *this. The merge is stable; that is, if an element from *this is //! equivalent to one from x, then the element from *this will precede the one from x. //! //! Throws: Nothing. //! //! Complexity: This function is linear time: it performs at most //! size() + x.size() - 1 comparisons. //! //! Note: Iterators and references to *this are not invalidated. //template //void merge(const detail::moved_object >& x, StrictWeakOrdering comp) //{ return this->merge(x.get(), comp); } //! Effects: This function sorts the list *this according to std::less. //! The sort is stable, that is, the relative order of equivalent elements is preserved. //! //! Throws: Nothing. //! //! Notes: Iterators and references are not invalidated. //! //! Complexity: The number of comparisons is approximately N log N, where N //! is the list's size. void sort() { this->sort(value_less()); } //! Effects: This function sorts the list *this according to std::less. //! The sort is stable, that is, the relative order of equivalent elements is preserved. //! //! Throws: Nothing. //! //! Notes: Iterators and references are not invalidated. //! //! Complexity: The number of comparisons is approximately N log N, where N //! is the list's size. template void sort(StrictWeakOrdering comp) { // nothing if the list has length 0 or 1. if (this->size() < 2) return; this->icont().sort(ValueCompareToNodeCompare(comp)); } /// @cond private: //Iterator range version template void priv_create_and_insert_nodes (const_iterator pos, InpIterator beg, InpIterator end) { typedef typename std::iterator_traits::iterator_category ItCat; priv_create_and_insert_nodes(pos, beg, end, alloc_version(), ItCat()); } template void priv_create_and_insert_nodes (const_iterator pos, InpIterator beg, InpIterator end, allocator_v1, std::input_iterator_tag) { for (; beg != end; ++beg){ this->icont().insert(pos.get(), *this->create_node_from_it(beg)); } } template void priv_create_and_insert_nodes (const_iterator pos, InpIterator beg, InpIterator end, allocator_v2, std::input_iterator_tag) { //Just forward to the default one priv_create_and_insert_nodes(pos, beg, end, allocator_v1(), std::input_iterator_tag()); } class insertion_functor; friend class insertion_functor; class insertion_functor { Icont &icont_; typename Icont::iterator pos_; public: insertion_functor(Icont &icont, typename Icont::iterator pos) : icont_(icont), pos_(pos) {} void operator()(Node &n) { this->icont_.insert(pos_, n); } }; template void priv_create_and_insert_nodes (const_iterator pos, FwdIterator beg, FwdIterator end, allocator_v2, std::forward_iterator_tag) { //Optimized allocation and construction this->allocate_many_and_construct (beg, std::distance(beg, end), insertion_functor(this->icont(), pos.get())); } //Default constructed version void priv_create_and_insert_nodes(const_iterator pos, size_type n) { typedef default_construct_iterator default_iterator; this->priv_create_and_insert_nodes(pos, default_iterator(n), default_iterator()); } //Copy constructed version void priv_create_and_insert_nodes(const_iterator pos, size_type n, const T& x) { typedef constant_iterator cvalue_iterator; this->priv_create_and_insert_nodes(pos, cvalue_iterator(x, n), cvalue_iterator()); } //Dispatch to detect iterator range or integer overloads template void priv_insert_dispatch(iterator p, InputIter first, InputIter last, detail::false_) { this->priv_create_and_insert_nodes(p, first, last); } template void priv_insert_dispatch(iterator p, Integer n, Integer x, detail::true_) { this->insert(p, (size_type)n, x); } void priv_fill_assign(size_type n, const T& val) { iterator i = this->begin(), iend = this->end(); for ( ; i != iend && n > 0; ++i, --n) *i = val; if (n > 0){ this->priv_create_and_insert_nodes(this->end(), n, val); } else{ this->erase(i, end()); } } template void priv_assign_dispatch(Integer n, Integer val, detail::true_) { this->priv_fill_assign((size_type) n, (T) val); } template void priv_assign_dispatch(InputIter first2, InputIter last2, detail::false_) { iterator first1 = this->begin(); iterator last1 = this->end(); for ( ; first1 != last1 && first2 != last2; ++first1, ++first2) *first1 = *first2; if (first2 == last2) this->erase(first1, last1); else{ this->priv_create_and_insert_nodes(last1, first2, last2); } } //Functors for member algorithm defaults struct value_less { bool operator()(const value_type &a, const value_type &b) const { return a < b; } }; struct value_equal { bool operator()(const value_type &a, const value_type &b) const { return a == b; } }; /// @endcond }; template inline bool operator==(const list& x, const list& y) { if(x.size() != y.size()){ return false; } typedef typename list::const_iterator const_iterator; const_iterator end1 = x.end(); const_iterator i1 = x.begin(); const_iterator i2 = y.begin(); while (i1 != end1 && *i1 == *i2) { ++i1; ++i2; } return i1 == end1; } template inline bool operator<(const list& x, const list& y) { return std::lexicographical_compare(x.begin(), x.end(), y.begin(), y.end()); } template inline bool operator!=(const list& x, const list& y) { return !(x == y); } template inline bool operator>(const list& x, const list& y) { return y < x; } template inline bool operator<=(const list& x, const list& y) { return !(y < x); } template inline bool operator>=(const list& x, const list& y) { return !(x < y); } #ifndef BOOST_INTERPROCESS_RVALUE_REFERENCE template inline void swap(list& x, list& y) { x.swap(y); } template inline void swap(const detail::moved_object >& x, list& y) { x.get().swap(y); } template inline void swap(list& x, const detail::moved_object >& y) { x.swap(y.get()); } #else template inline void swap(list &&x, list &&y) { x.swap(y); } #endif /// @cond //!This class is movable template struct is_movable > { enum { value = true }; }; //!This class is movable template struct is_movable > { enum { value = true }; }; /* //!This class is movable template struct is_movable > { enum { value = true }; }; */ //!has_trivial_destructor_after_move<> == true_type //!specialization for optimizations template struct has_trivial_destructor_after_move > { enum { value = has_trivial_destructor::value }; }; /// @endcond } //namespace interprocess { } //namespace boost { #include #endif // BOOST_INTERPROCESS_LIST_HPP_