////////////////////////////////////////////////////////////////////////////// // // (C) Copyright Ion Gaztanaga 2004-2008. Distributed under the Boost // Software License, Version 1.0. (See accompanying file // LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt) // // See http://www.boost.org/libs/interprocess for documentation. // ////////////////////////////////////////////////////////////////////////////// // // This file comes from SGI's stl_slist.h file. Modified by Ion Gaztanaga 2004-2008 // Renaming, isolating and porting to generic algorithms. Pointer typedef // set to allocator::pointer to allow placing it in shared memory. // /////////////////////////////////////////////////////////////////////////////// /* * * Copyright (c) 1994 * Hewlett-Packard Company * * Permission to use, copy, modify, distribute and sell this software * and its documentation for any purpose is hereby granted without fee, * provided that the above copyright notice appear in all copies and * that both that copyright notice and this permission notice appear * in supporting documentation. Hewlett-Packard Company makes no * representations about the suitability of this software for any * purpose. It is provided "as is" without express or implied warranty. * * * Copyright (c) 1996 * Silicon Graphics Computer Systems, Inc. * * Permission to use, copy, modify, distribute and sell this software * and its documentation for any purpose is hereby granted without fee, * provided that the above copyright notice appear in all copies and * that both that copyright notice and this permission notice appear * in supporting documentation. Silicon Graphics makes no * representations about the suitability of this software for any * purpose. It is provided "as is" without express or implied warranty. * */ #ifndef BOOST_INTERPROCESS_SLIST_HPP #define BOOST_INTERPROCESS_SLIST_HPP #if (defined _MSC_VER) && (_MSC_VER >= 1200) # pragma once #endif #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include namespace boost{ namespace interprocess{ namespace detail { /// @cond template struct slist_node : public bi::make_slist_base_hook , bi::link_mode >::type { typedef typename bi::make_slist_base_hook , bi::link_mode >::type hook_type; slist_node() : m_data() {} #ifndef BOOST_INTERPROCESS_RVALUE_REFERENCE template slist_node(const Convertible &value) : m_data(value){} #else template slist_node(Convertible &&value) : m_data(forward(value)){} #endif T m_data; }; template struct intrusive_slist_type { typedef typename A::value_type value_type; typedef typename detail::pointer_to_other ::type void_pointer; typedef typename detail::slist_node node_type; typedef typename bi::make_slist ,bi::constant_time_size ,bi::size_type >::type container_type; typedef container_type type ; }; /// @endcond } //namespace detail { //! An slist is a singly linked list: a list where each element is linked to the next //! element, but not to the previous element. That is, it is a Sequence that //! supports forward but not backward traversal, and (amortized) constant time //! insertion and removal of elements. Slists, like lists, have the important //! property that insertion and splicing do not invalidate iterators to list elements, //! and that even removal invalidates only the iterators that point to the elements //! that are removed. The ordering of iterators may be changed (that is, //! slist::iterator might have a different predecessor or successor after a list //! operation than it did before), but the iterators themselves will not be invalidated //! or made to point to different elements unless that invalidation or mutation is explicit. //! //! The main difference between slist and list is that list's iterators are bidirectional //! iterators, while slist's iterators are forward iterators. This means that slist is //! less versatile than list; frequently, however, bidirectional iterators are //! unnecessary. You should usually use slist unless you actually need the extra //! functionality of list, because singly linked lists are smaller and faster than double //! linked lists. //! //! Important performance note: like every other Sequence, slist defines the member //! functions insert and erase. Using these member functions carelessly, however, can //! result in disastrously slow programs. The problem is that insert's first argument is //! an iterator p, and that it inserts the new element(s) before p. This means that //! insert must find the iterator just before p; this is a constant-time operation //! for list, since list has bidirectional iterators, but for slist it must find that //! iterator by traversing the list from the beginning up to p. In other words: //! insert and erase are slow operations anywhere but near the beginning of the slist. //! //! Slist provides the member functions insert_after and erase_after, which are constant //! time operations: you should always use insert_after and erase_after whenever //! possible. If you find that insert_after and erase_after aren't adequate for your //! needs, and that you often need to use insert and erase in the middle of the list, //! then you should probably use list instead of slist. template class slist : protected detail::node_alloc_holder ::type> { /// @cond typedef typename detail::intrusive_slist_type::type Icont; typedef detail::node_alloc_holder AllocHolder; typedef typename AllocHolder::NodePtr NodePtr; typedef list ThisType; typedef typename AllocHolder::NodeAlloc NodeAlloc; typedef typename AllocHolder::ValAlloc ValAlloc; typedef typename AllocHolder::Node Node; typedef detail::allocator_destroyer Destroyer; typedef typename AllocHolder::allocator_v1 allocator_v1; typedef typename AllocHolder::allocator_v2 allocator_v2; typedef typename AllocHolder::alloc_version alloc_version; class equal_to_value { typedef typename AllocHolder::value_type value_type; const value_type &t_; public: equal_to_value(const value_type &t) : t_(t) {} bool operator()(const value_type &t)const { return t_ == t; } }; template struct ValueCompareToNodeCompare : Pred { ValueCompareToNodeCompare(Pred pred) : Pred(pred) {} bool operator()(const Node &a, const Node &b) const { return static_cast(*this)(a.m_data, b.m_data); } bool operator()(const Node &a) const { return static_cast(*this)(a.m_data); } }; /// @endcond public: //! The type of object, T, stored in the list typedef T value_type; //! Pointer to T typedef typename A::pointer pointer; //! Const pointer to T typedef typename A::const_pointer const_pointer; //! Reference to T typedef typename A::reference reference; //! Const reference to T typedef typename A::const_reference const_reference; //! An unsigned integral type typedef typename A::size_type size_type; //! A signed integral type typedef typename A::difference_type difference_type; //! The allocator type typedef A allocator_type; //! The stored allocator type typedef NodeAlloc stored_allocator_type; /// @cond private: typedef difference_type list_difference_type; typedef pointer list_pointer; typedef const_pointer list_const_pointer; typedef reference list_reference; typedef const_reference list_const_reference; /// @endcond public: //! Const iterator used to iterate through a list. class const_iterator /// @cond : public std::iterator { protected: typename Icont::iterator m_it; explicit const_iterator(typename Icont::iterator it) : m_it(it){} void prot_incr(){ ++m_it; } private: typename Icont::iterator get() { return this->m_it; } public: friend class slist; typedef list_difference_type difference_type; //Constructors const_iterator() : m_it() {} //Pointer like operators const_reference operator*() const { return m_it->m_data; } const_pointer operator->() const { return const_pointer(&m_it->m_data); } //Increment / Decrement const_iterator& operator++() { prot_incr(); return *this; } const_iterator operator++(int) { typename Icont::iterator tmp = m_it; ++*this; return const_iterator(tmp); } //Comparison operators bool operator== (const const_iterator& r) const { return m_it == r.m_it; } bool operator!= (const const_iterator& r) const { return m_it != r.m_it; } } /// @endcond ; //! Iterator used to iterate through a list class iterator /// @cond : public const_iterator { private: explicit iterator(typename Icont::iterator it) : const_iterator(it) {} typename Icont::iterator get() { return this->m_it; } public: friend class slist; typedef list_pointer pointer; typedef list_reference reference; //Constructors iterator(){} //Pointer like operators reference operator*() const { return this->m_it->m_data; } pointer operator->() const { return pointer(&this->m_it->m_data); } //Increment / Decrement iterator& operator++() { this->prot_incr(); return *this; } iterator operator++(int) { typename Icont::iterator tmp = this->m_it; ++*this; return iterator(tmp); } } /// @endcond ; public: //! Effects: Constructs a list taking the allocator as parameter. //! //! Throws: If allocator_type's copy constructor throws. //! //! Complexity: Constant. explicit slist(const allocator_type& a = allocator_type()) : AllocHolder(a) {} // explicit slist(size_type n) // : AllocHolder(move(allocator_type())) // { this->resize(n); } //! Effects: Constructs a list that will use a copy of allocator a //! and inserts n copies of value. //! //! Throws: If allocator_type's default constructor or copy constructor //! throws or T's default or copy constructor throws. //! //! Complexity: Linear to n. explicit slist(size_type n, const value_type& x = value_type(), const allocator_type& a = allocator_type()) : AllocHolder(a) { this->priv_create_and_insert_nodes(this->before_begin(), n, x); } //! Effects: Constructs a list that will use a copy of allocator a //! and inserts a copy of the range [first, last) in the list. //! //! Throws: If allocator_type's default constructor or copy constructor //! throws or T's constructor taking an dereferenced InIt throws. //! //! Complexity: Linear to the range [first, last). template slist(InpIt first, InpIt last, const allocator_type& a = allocator_type()) : AllocHolder(a) { this->insert_after(this->before_begin(), first, last); } //! Effects: Copy constructs a list. //! //! Postcondition: x == *this. //! //! Throws: If allocator_type's default constructor or copy constructor throws. //! //! Complexity: Linear to the elements x contains. slist(const slist& x) : AllocHolder(x) { this->insert_after(this->before_begin(), x.begin(), x.end()); } //! Effects: Move constructor. Moves mx's resources to *this. //! //! Throws: If allocator_type's default constructor throws. //! //! Complexity: Constant. #ifndef BOOST_INTERPROCESS_RVALUE_REFERENCE slist(const detail::moved_object &x) : AllocHolder(move((AllocHolder&)x.get())) {} #else slist(slist &&x) : AllocHolder(move((AllocHolder&)x)) {} #endif //! Effects: Makes *this contain the same elements as x. //! //! Postcondition: this->size() == x.size(). *this contains a copy //! of each of x's elements. //! //! Throws: If memory allocation throws or T's copy constructor throws. //! //! Complexity: Linear to the number of elements in x. slist& operator= (const slist& x) { if (&x != this){ this->assign(x.begin(), x.end()); } return *this; } //! Effects: Makes *this contain the same elements as x. //! //! Postcondition: this->size() == x.size(). *this contains a copy //! of each of x's elements. //! //! Throws: If memory allocation throws or T's copy constructor throws. //! //! Complexity: Linear to the number of elements in x. #ifndef BOOST_INTERPROCESS_RVALUE_REFERENCE slist& operator= (const detail::moved_object& mx) { if (&mx.get() != this){ this->clear(); this->swap(mx.get()); } return *this; } #else slist& operator= (slist && mx) { if (&mx != this){ this->clear(); this->swap(mx); } return *this; } #endif //! Effects: Destroys the list. All stored values are destroyed //! and used memory is deallocated. //! //! Throws: Nothing. //! //! Complexity: Linear to the number of elements. ~slist() { this->clear(); } //! Effects: Returns a copy of the internal allocator. //! //! Throws: If allocator's copy constructor throws. //! //! Complexity: Constant. allocator_type get_allocator() const { return allocator_type(this->node_alloc()); } const stored_allocator_type &get_stored_allocator() const { return this->node_alloc(); } stored_allocator_type &get_stored_allocator() { return this->node_alloc(); } public: //! Effects: Assigns the n copies of val to *this. //! //! Throws: If memory allocation throws or T's copy constructor throws. //! //! Complexity: Linear to n. void assign(size_type n, const T& val) { this->priv_fill_assign(n, val); } //! Effects: Assigns the range [first, last) to *this. //! //! Throws: If memory allocation throws or //! T's constructor from dereferencing InpIt throws. //! //! Complexity: Linear to n. template void assign(InpIt first, InpIt last) { const bool aux_boolean = detail::is_convertible::value; typedef detail::bool_ Result; this->priv_assign_dispatch(first, last, Result()); } //! Effects: Returns an iterator to the first element contained in the list. //! //! Throws: Nothing. //! //! Complexity: Constant. iterator begin() { return iterator(this->icont().begin()); } //! Effects: Returns a const_iterator to the first element contained in the list. //! //! Throws: Nothing. //! //! Complexity: Constant. const_iterator begin() const { return const_iterator(this->non_const_icont().begin()); } //! Effects: Returns an iterator to the end of the list. //! //! Throws: Nothing. //! //! Complexity: Constant. iterator end() { return iterator(this->icont().end()); } //! Effects: Returns a const_iterator to the end of the list. //! //! Throws: Nothing. //! //! Complexity: Constant. const_iterator end() const { return const_iterator(this->non_const_icont().end()); } //! Effects: Returns a non-dereferenceable iterator that, //! when incremented, yields begin(). This iterator may be used //! as the argument toinsert_after, erase_after, etc. //! //! Throws: Nothing. //! //! Complexity: Constant. iterator before_begin() { return iterator(end()); } //! Effects: Returns a non-dereferenceable const_iterator //! that, when incremented, yields begin(). This iterator may be used //! as the argument toinsert_after, erase_after, etc. //! //! Throws: Nothing. //! //! Complexity: Constant. const_iterator before_begin() const { return const_iterator(end()); } //! Effects: Returns the number of the elements contained in the list. //! //! Throws: Nothing. //! //! Complexity: Constant. size_type size() const { return this->icont().size(); } //! Effects: Returns the largest possible size of the list. //! //! Throws: Nothing. //! //! Complexity: Constant. size_type max_size() const { return AllocHolder::max_size(); } //! Effects: Returns true if the list contains no elements. //! //! Throws: Nothing. //! //! Complexity: Constant. bool empty() const { return !this->size(); } //! Effects: Swaps the contents of *this and x. //! If this->allocator_type() != x.allocator_type() //! allocators are also swapped. //! //! Throws: Nothing. //! //! Complexity: Linear to the number of elements on *this and x. void swap(slist& x) { AllocHolder::swap(x); } //! Requires: !empty() //! //! Effects: Returns a reference to the first element //! from the beginning of the container. //! //! Throws: Nothing. //! //! Complexity: Constant. reference front() { return *this->begin(); } //! Requires: !empty() //! //! Effects: Returns a const reference to the first element //! from the beginning of the container. //! //! Throws: Nothing. //! //! Complexity: Constant. const_reference front() const { return *this->begin(); } //! Effects: Inserts a copy of t in the beginning of the list. //! //! Throws: If memory allocation throws or //! T's copy constructor throws. //! //! Complexity: Amortized constant time. void push_front(const value_type& x) { this->icont().push_front(*this->create_node(x)); } //! Effects: Constructs a new element in the beginning of the list //! and moves the resources of t to this new element. //! //! Throws: If memory allocation throws. //! //! Complexity: Amortized constant time. #ifndef BOOST_INTERPROCESS_RVALUE_REFERENCE void push_front(const detail::moved_object& x) { this->icont().push_front(*this->create_node(x)); } #else void push_front(T && x) { this->icont().push_front(*this->create_node(move(x))); } #endif //! Effects: Removes the first element from the list. //! //! Throws: Nothing. //! //! Complexity: Amortized constant time. void pop_front() { this->icont().pop_front_and_dispose(Destroyer(this->node_alloc())); } //! Returns: The iterator to the element before i in the sequence. //! Returns the end-iterator, if either i is the begin-iterator or the //! sequence is empty. //! //! Throws: Nothing. //! //! Complexity: Linear to the number of elements before i. iterator previous(iterator p) { return iterator(this->icont().previous(p.get())); } //! Returns: The const_iterator to the element before i in the sequence. //! Returns the end-const_iterator, if either i is the begin-const_iterator or //! the sequence is empty. //! //! Throws: Nothing. //! //! Complexity: Linear to the number of elements before i. const_iterator previous(const_iterator p) { return const_iterator(this->icont().previous(p.get())); } //! Requires: p must be a valid iterator of *this. //! //! Effects: Inserts a copy of the value after the p pointed //! by prev_p. //! //! Returns: An iterator to the inserted element. //! //! Throws: If memory allocation throws or T's copy constructor throws. //! //! Complexity: Amortized constant time. //! //! Note: Does not affect the validity of iterators and references of //! previous values. iterator insert_after(iterator prev_pos, const value_type& x) { return iterator(this->icont().insert_after(prev_pos.get(), *this->create_node(x))); } //! Requires: prev_pos must be a valid iterator of *this. //! //! Effects: Inserts a move constructed copy object from the value after the //! p pointed by prev_pos. //! //! Returns: An iterator to the inserted element. //! //! Throws: If memory allocation throws. //! //! Complexity: Amortized constant time. //! //! Note: Does not affect the validity of iterators and references of //! previous values. #ifndef BOOST_INTERPROCESS_RVALUE_REFERENCE iterator insert_after(iterator prev_pos, const detail::moved_object& x) { return iterator(this->icont().insert_after(prev_pos.get(), *this->create_node(x))); } #else iterator insert_after(iterator prev_pos, value_type && x) { return iterator(this->icont().insert_after(prev_pos.get(), *this->create_node(move(x)))); } #endif //! Requires: prev_pos must be a valid iterator of *this. //! //! Effects: Inserts n copies of x after prev_pos. //! //! Throws: If memory allocation throws or T's copy constructor throws. //! //! Complexity: Linear to n. //! //! Note: Does not affect the validity of iterators and references of //! previous values. void insert_after(iterator prev_pos, size_type n, const value_type& x) { this->priv_create_and_insert_nodes(prev_pos, n, x); } //! Requires: prev_pos must be a valid iterator of *this. //! //! Effects: Inserts the range pointed by [first, last) //! after the p prev_pos. //! //! Throws: If memory allocation throws, T's constructor from a //! dereferenced InpIt throws. //! //! Complexity: Linear to the number of elements inserted. //! //! Note: Does not affect the validity of iterators and references of //! previous values. template void insert_after(iterator prev_pos, InIter first, InIter last) { const bool aux_boolean = detail::is_convertible::value; typedef detail::bool_ Result; this->priv_insert_after_range_dispatch(prev_pos, first, last, Result()); } //! Requires: p must be a valid iterator of *this. //! //! Effects: Insert a copy of x before p. //! //! Throws: If memory allocation throws or x's copy constructor throws. //! //! Complexity: Linear to the elements before p. iterator insert(iterator p, const value_type& x) { return this->insert_after(previous(p), x); } //! Requires: p must be a valid iterator of *this. //! //! Effects: Insert a new element before p with mx's resources. //! //! Throws: If memory allocation throws. //! //! Complexity: Linear to the elements before p. #ifndef BOOST_INTERPROCESS_RVALUE_REFERENCE iterator insert(iterator p, const detail::moved_object& x) { return this->insert_after(previous(p), x); } #else iterator insert(iterator p, value_type && x) { return this->insert_after(previous(p), move(x)); } #endif //! Requires: p must be a valid iterator of *this. //! //! Effects: Inserts n copies of x before p. //! //! Throws: If memory allocation throws or T's copy constructor throws. //! //! Complexity: Linear to n plus linear to the elements before p. void insert(iterator p, size_type n, const value_type& x) { return this->insert_after(previous(p), n, x); } //! Requires: p must be a valid iterator of *this. //! //! Effects: Insert a copy of the [first, last) range before p. //! //! Throws: If memory allocation throws, T's constructor from a //! dereferenced InpIt throws. //! //! Complexity: Linear to std::distance [first, last) plus //! linear to the elements before p. template void insert(iterator p, InIter first, InIter last) { return this->insert_after(previous(p), first, last); } //! Effects: Erases the element after the element pointed by prev_pos //! of the list. //! //! Returns: the first element remaining beyond the removed elements, //! or end() if no such element exists. //! //! Throws: Nothing. //! //! Complexity: Constant. //! //! Note: Does not invalidate iterators or references to non erased elements. iterator erase_after(iterator prev_pos) { return iterator(this->icont().erase_after_and_dispose(prev_pos.get(), Destroyer(this->node_alloc()))); } //! Effects: Erases the range (before_first, last) from //! the list. //! //! Returns: the first element remaining beyond the removed elements, //! or end() if no such element exists. //! //! Throws: Nothing. //! //! Complexity: Linear to the number of erased elements. //! //! Note: Does not invalidate iterators or references to non erased elements. iterator erase_after(iterator before_first, iterator last) { return iterator(this->icont().erase_after_and_dispose(before_first.get(), last.get(), Destroyer(this->node_alloc()))); } //! Requires: p must be a valid iterator of *this. //! //! Effects: Erases the element at p p. //! //! Throws: Nothing. //! //! Complexity: Linear to the number of elements before p. iterator erase(iterator p) { return iterator(this->erase_after(previous(p))); } //! Requires: first and last must be valid iterator to elements in *this. //! //! Effects: Erases the elements pointed by [first, last). //! //! Throws: Nothing. //! //! Complexity: Linear to the distance between first and last plus //! linear to the elements before first. iterator erase(iterator first, iterator last) { return iterator(this->erase_after(previous(first), last)); } //! Effects: Inserts or erases elements at the end such that //! the size becomes n. New elements are copy constructed from x. //! //! Throws: If memory allocation throws, or T's copy constructor throws. //! //! Complexity: Linear to the difference between size() and new_size. void resize(size_type new_size, const T& x) { typename Icont::iterator end_n(this->icont().end()), cur(this->icont().before_begin()), cur_next; while (++(cur_next = cur) != end_n && new_size > 0){ --new_size; cur = cur_next; } if (cur_next != end_n) this->erase_after(iterator(cur), iterator(end_n)); else this->insert_after(iterator(cur), new_size, x); } //! Effects: Inserts or erases elements at the end such that //! the size becomes n. New elements are default constructed. //! //! Throws: If memory allocation throws, or T's copy constructor throws. //! //! Complexity: Linear to the difference between size() and new_size. void resize(size_type new_size) { typename Icont::iterator end_n(this->icont().end()), cur(this->icont().before_begin()), cur_next; size_type len = this->size(); size_type left = new_size; while (++(cur_next = cur) != end_n && left > 0){ --left; cur = cur_next; } if (cur_next != end_n){ this->erase_after(iterator(cur), iterator(end_n)); } else{ this->priv_create_and_insert_nodes(iterator(cur), new_size - len); } } //! Effects: Erases all the elements of the list. //! //! Throws: Nothing. //! //! Complexity: Linear to the number of elements in the list. void clear() { this->icont().clear_and_dispose(Destroyer(this->node_alloc())); } //! Requires: p must point to an element contained //! by the list. x != *this //! //! Effects: Transfers all the elements of list x to this list, after the //! the element pointed by p. No destructors or copy constructors are called. //! //! Throws: std::runtime_error if this' allocator and x's allocator //! are not equal. //! //! Complexity: Linear to the elements in x. //! //! Note: Iterators of values obtained from list x now point to elements of //! this list. Iterators of this list and all the references are not invalidated. void splice_after(iterator prev_pos, slist& x) { if((NodeAlloc&)*this == (NodeAlloc&)x){ this->icont().splice_after(prev_pos.get(), x.icont()); } else{ throw std::runtime_error("slist::splice called with unequal allocators"); } } //void splice_after(iterator prev_pos, const detail::moved_object& x) //{ this->splice_after(prev_pos, x.get()); } // Moves the element that follows prev to *this, inserting it immediately // after p. This is constant time. //! Requires: prev_pos must be a valid iterator of this. //! i must point to an element contained in list x. //! //! Effects: Transfers the value pointed by i, from list x to this list, //! after the element pointed by prev_pos. //! If prev_pos == prev or prev_pos == ++prev, this function is a null operation. //! //! Throws: std::runtime_error if this' allocator and x's allocator //! are not equal. //! //! Complexity: Constant. //! //! Note: Iterators of values obtained from list x now point to elements of this //! list. Iterators of this list and all the references are not invalidated. void splice_after(iterator prev_pos, slist& x, iterator prev) { if((NodeAlloc&)*this == (NodeAlloc&)x){ this->icont().splice_after(prev_pos.get(), x.icont(), prev.get()); } else{ throw std::runtime_error("slist::splice called with unequal allocators"); } } //void splice_after(iterator prev_pos, const detail::moved_object& x, iterator prev) //{ return splice_after(prev_pos, x.get(), prev); } // Moves the range [before_first + 1, before_last + 1) to *this, // inserting it immediately after p. This is constant time. //! Requires: prev_pos must be a valid iterator of this. //! before_first and before_last must be valid iterators of x. //! prev_pos must not be contained in [before_first, before_last) range. //! //! Effects: Transfers the range [before_first + 1, before_last + 1) //! from list x to this list, after the element pointed by prev_pos. //! //! Throws: std::runtime_error if this' allocator and x's allocator //! are not equal. //! //! Complexity: Linear to the number of transferred elements. //! //! Note: Iterators of values obtained from list x now point to elements of this //! list. Iterators of this list and all the references are not invalidated. void splice_after(iterator prev_pos, slist& x, iterator before_first, iterator before_last) { if((NodeAlloc&)*this == (NodeAlloc&)x){ this->icont().splice_after (prev_pos.get(), x.icont(), before_first.get(), before_last.get()); } else{ throw std::runtime_error("slist::splice called with unequal allocators"); } } //void splice_after(iterator prev_pos, const detail::moved_object& x, // iterator before_first, iterator before_last) //{ this->splice_after(prev_pos, x.get(), before_first, before_last); } //! Requires: prev_pos must be a valid iterator of this. //! before_first and before_last must be valid iterators of x. //! prev_pos must not be contained in [before_first, before_last) range. //! n == std::distance(before_first, before_last) //! //! Effects: Transfers the range [before_first + 1, before_last + 1) //! from list x to this list, after the element pointed by prev_pos. //! //! Throws: std::runtime_error if this' allocator and x's allocator //! are not equal. //! //! Complexity: Constant. //! //! Note: Iterators of values obtained from list x now point to elements of this //! list. Iterators of this list and all the references are not invalidated. void splice_after(iterator prev_pos, slist& x, iterator before_first, iterator before_last, size_type n) { if((NodeAlloc&)*this == (NodeAlloc&)x){ this->icont().splice_after (prev_pos.get(), x.icont(), before_first.get(), before_last.get(), n); } else{ throw std::runtime_error("slist::splice called with unequal allocators"); } } //void splice_after(iterator prev_pos, const detail::moved_object& x, // iterator before_first, iterator before_last, size_type n) //{ this->splice_after(prev_pos, x.get(), before_first, before_last, n); } //! Requires: p must point to an element contained //! by the list. x != *this //! //! Effects: Transfers all the elements of list x to this list, before the //! the element pointed by p. No destructors or copy constructors are called. //! //! Throws: std::runtime_error if this' allocator and x's allocator //! are not equal. //! //! Complexity: Linear in distance(begin(), p), and linear in x.size(). //! //! Note: Iterators of values obtained from list x now point to elements of //! this list. Iterators of this list and all the references are not invalidated. void splice(iterator p, slist& x) { this->splice_after(this->previous(p), x); } //void splice(iterator p, const detail::moved_object& x) //{ return this->splice(p, x.get()); } //! Requires: p must point to an element contained //! by this list. i must point to an element contained in list x. //! //! Effects: Transfers the value pointed by i, from list x to this list, //! before the the element pointed by p. No destructors or copy constructors are called. //! If p == i or p == ++i, this function is a null operation. //! //! Throws: std::runtime_error if this' allocator and x's allocator //! are not equal. //! //! Complexity: Linear in distance(begin(), p), and in distance(x.begin(), i). //! //! Note: Iterators of values obtained from list x now point to elements of this //! list. Iterators of this list and all the references are not invalidated. void splice(iterator p, slist& x, iterator i) { this->splice_after(previous(p), x, i); } //void splice(iterator p, const detail::moved_object& x, iterator i) //{ this->splice(p, x.get(), i); } //! Requires: p must point to an element contained //! by this list. first and last must point to elements contained in list x. //! //! Effects: Transfers the range pointed by first and last from list x to this list, //! before the the element pointed by p. No destructors or copy constructors are called. //! //! Throws: std::runtime_error if this' allocator and x's allocator //! are not equal. //! //! Complexity: Linear in distance(begin(), p), in distance(x.begin(), first), //! and in distance(first, last). //! //! Note: Iterators of values obtained from list x now point to elements of this //! list. Iterators of this list and all the references are not invalidated. void splice(iterator p, slist& x, iterator first, iterator last) { this->splice_after(previous(p), x, previous(first), previous(last)); } //void splice(iterator p, const detail::moved_object& x, iterator first, iterator last) //{ this->splice(p, x.get(), first, last); } //! Effects: Reverses the order of elements in the list. //! //! Throws: Nothing. //! //! Complexity: This function is linear time. //! //! Note: Iterators and references are not invalidated void reverse() { this->icont().reverse(); } //! Effects: Removes all the elements that compare equal to value. //! //! Throws: Nothing. //! //! Complexity: Linear time. It performs exactly size() comparisons for equality. //! //! Note: The relative order of elements that are not removed is unchanged, //! and iterators to elements that are not removed remain valid. void remove(const T& value) { remove_if(equal_to_value(value)); } //! Effects: Removes all the elements for which a specified //! predicate is satisfied. //! //! Throws: If pred throws. //! //! Complexity: Linear time. It performs exactly size() calls to the predicate. //! //! Note: The relative order of elements that are not removed is unchanged, //! and iterators to elements that are not removed remain valid. template void remove_if(Pred pred) { typedef ValueCompareToNodeCompare Predicate; this->icont().remove_and_dispose_if(Predicate(pred), Destroyer(this->node_alloc())); } //! Effects: Removes adjacent duplicate elements or adjacent //! elements that are equal from the list. //! //! Throws: Nothing. //! //! Complexity: Linear time (size()-1 comparisons calls to pred()). //! //! Note: The relative order of elements that are not removed is unchanged, //! and iterators to elements that are not removed remain valid. void unique() { this->unique(value_equal()); } //! Effects: Removes adjacent duplicate elements or adjacent //! elements that satisfy some binary predicate from the list. //! //! Throws: If pred throws. //! //! Complexity: Linear time (size()-1 comparisons equality comparisons). //! //! Note: The relative order of elements that are not removed is unchanged, //! and iterators to elements that are not removed remain valid. template void unique(Pred pred) { typedef ValueCompareToNodeCompare Predicate; this->icont().unique_and_dispose(Predicate(pred), Destroyer(this->node_alloc())); } //! Requires: The lists x and *this must be distinct. //! //! Effects: This function removes all of x's elements and inserts them //! in order into *this according to std::less. The merge is stable; //! that is, if an element from *this is equivalent to one from x, then the element //! from *this will precede the one from x. //! //! Throws: Nothing. //! //! Complexity: This function is linear time: it performs at most //! size() + x.size() - 1 comparisons. void merge(slist& x) { this->merge(x, value_less()); } //void merge(const detail::moved_object& x) //{ this->merge(x.get(), value_less()); } //! Requires: p must be a comparison function that induces a strict weak //! ordering and both *this and x must be sorted according to that ordering //! The lists x and *this must be distinct. //! //! Effects: This function removes all of x's elements and inserts them //! in order into *this. The merge is stable; that is, if an element from *this is //! equivalent to one from x, then the element from *this will precede the one from x. //! //! Throws: Nothing. //! //! Complexity: This function is linear time: it performs at most //! size() + x.size() - 1 comparisons. //! //! Note: Iterators and references to *this are not invalidated. template void merge(slist& x, StrictWeakOrdering comp) { if((NodeAlloc&)*this == (NodeAlloc&)x){ this->icont().merge(x.icont(), ValueCompareToNodeCompare(comp)); } else{ throw std::runtime_error("list::merge called with unequal allocators"); } } //template //void merge(const detail::moved_object& x, StrictWeakOrdering comp) //{ this->merge(x.get(), comp); } //! Effects: This function sorts the list *this according to std::less. //! The sort is stable, that is, the relative order of equivalent elements is preserved. //! //! Throws: Nothing. //! //! Notes: Iterators and references are not invalidated. //! //! Complexity: The number of comparisons is approximately N log N, where N //! is the list's size. void sort() { this->sort(value_less()); } //! Effects: This function sorts the list *this according to std::less. //! The sort is stable, that is, the relative order of equivalent elements is preserved. //! //! Throws: Nothing. //! //! Notes: Iterators and references are not invalidated. //! //! Complexity: The number of comparisons is approximately N log N, where N //! is the list's size. template void sort(StrictWeakOrdering comp) { // nothing if the slist has length 0 or 1. if (this->size() < 2) return; this->icont().sort(ValueCompareToNodeCompare(comp)); } /// @cond private: //Iterator range version template void priv_create_and_insert_nodes (const_iterator prev, InpIterator beg, InpIterator end) { typedef typename std::iterator_traits::iterator_category ItCat; priv_create_and_insert_nodes(prev, beg, end, alloc_version(), ItCat()); } template void priv_create_and_insert_nodes (const_iterator prev, InpIterator beg, InpIterator end, allocator_v1, std::input_iterator_tag) { for (; beg != end; ++beg){ this->icont().insert_after(prev.get(), *this->create_node_from_it(beg)); ++prev; } } template void priv_create_and_insert_nodes (const_iterator prev, InpIterator beg, InpIterator end, allocator_v2, std::input_iterator_tag) { //Just forward to the default one priv_create_and_insert_nodes(prev, beg, end, allocator_v1(), std::input_iterator_tag()); } class insertion_functor; friend class insertion_functor; class insertion_functor { Icont &icont_; typename Icont::iterator prev_; public: insertion_functor(Icont &icont, typename Icont::iterator prev) : icont_(icont), prev_(prev) {} void operator()(Node &n) { prev_ = this->icont_.insert_after(prev_, n); } }; template void priv_create_and_insert_nodes (const_iterator prev, FwdIterator beg, FwdIterator end, allocator_v2, std::forward_iterator_tag) { //Optimized allocation and construction this->allocate_many_and_construct (beg, std::distance(beg, end), insertion_functor(this->icont(), prev.get())); } //Default constructed version void priv_create_and_insert_nodes(const_iterator prev, size_type n) { typedef default_construct_iterator default_iterator; this->priv_create_and_insert_nodes(prev, default_iterator(n), default_iterator()); } //Copy constructed version void priv_create_and_insert_nodes(const_iterator prev, size_type n, const T& x) { typedef constant_iterator cvalue_iterator; this->priv_create_and_insert_nodes(prev, cvalue_iterator(x, n), cvalue_iterator()); } //Dispatch to detect iterator range or integer overloads template void priv_insert_dispatch(iterator prev, InputIter first, InputIter last, detail::false_) { this->priv_create_and_insert_nodes(prev, first, last); } template void priv_insert_dispatch(iterator prev, Integer n, Integer x, detail::true_) { this->priv_create_and_insert_nodes(prev, n, x); } void priv_fill_assign(size_type n, const T& val) { iterator end_n(this->end()); iterator prev(this->before_begin()); iterator node(this->begin()); for ( ; node != end_n && n > 0 ; --n){ *node = val; prev = node; ++node; } if (n > 0) this->priv_create_and_insert_nodes(prev, n, val); else this->erase_after(prev, end_n); } template void priv_assign_dispatch(Int n, Int val, detail::true_) { this->priv_fill_assign((size_type) n, (T)val); } template void priv_assign_dispatch(InpIt first, InpIt last, detail::false_) { iterator end_n(this->end()); iterator prev(this->before_begin()); iterator node(this->begin()); while (node != end_n && first != last){ *node = *first; prev = node; ++node; ++first; } if (first != last) this->priv_create_and_insert_nodes(prev, first, last); else this->erase_after(prev, end_n); } template void priv_insert_after_range_dispatch(iterator prev_pos, Int n, Int x, detail::true_) { this->priv_create_and_insert_nodes(prev_pos, n, x); } template void priv_insert_after_range_dispatch(iterator prev_pos, InIter first, InIter last, detail::false_) { this->priv_create_and_insert_nodes(prev_pos, first, last); } //Functors for member algorithm defaults struct value_less { bool operator()(const value_type &a, const value_type &b) const { return a < b; } }; struct value_equal { bool operator()(const value_type &a, const value_type &b) const { return a == b; } }; struct value_equal_to_this { explicit value_equal_to_this(const value_type &ref) : m_ref(ref){} bool operator()(const value_type &val) const { return m_ref == val; } const value_type &m_ref; }; /// @endcond }; template inline bool operator==(const slist& x, const slist& y) { if(x.size() != y.size()){ return false; } typedef typename slist::const_iterator const_iterator; const_iterator end1 = x.end(); const_iterator i1 = x.begin(); const_iterator i2 = y.begin(); while (i1 != end1 && *i1 == *i2){ ++i1; ++i2; } return i1 == end1; } template inline bool operator<(const slist& sL1, const slist& sL2) { return std::lexicographical_compare (sL1.begin(), sL1.end(), sL2.begin(), sL2.end()); } template inline bool operator!=(const slist& sL1, const slist& sL2) { return !(sL1 == sL2); } template inline bool operator>(const slist& sL1, const slist& sL2) { return sL2 < sL1; } template inline bool operator<=(const slist& sL1, const slist& sL2) { return !(sL2 < sL1); } template inline bool operator>=(const slist& sL1, const slist& sL2) { return !(sL1 < sL2); } #ifndef BOOST_INTERPROCESS_RVALUE_REFERENCE template inline void swap(slist& x, slist& y) { x.swap(y); } template inline void swap(const detail::moved_object >& x, slist& y) { x.get().swap(y); } template inline void swap(slist& x, const detail::moved_object >& y) { x.swap(y.get()); } #else template inline void swap(slist&&x, slist&&y) { x.swap(y); } #endif /// @cond //!This class is movable template struct is_movable > { enum { value = true }; }; //!This class is movable template struct is_movable > { enum { value = true }; }; //!This class is movable /* template struct is_movable > { enum { value = true }; }; */ //!has_trivial_destructor_after_move<> == true_type //!specialization for optimizations template struct has_trivial_destructor_after_move > { enum { value = has_trivial_destructor::value }; }; /// @endcond }} //namespace boost{ namespace interprocess{ // Specialization of insert_iterator so that insertions will be constant // time rather than linear time. //iG //Ummm, I don't like to define things in namespace std, but //there is no other way namespace std { template class insert_iterator > { protected: typedef boost::interprocess::slist Container; Container* container; typename Container::iterator iter; public: typedef Container container_type; typedef output_iterator_tag iterator_category; typedef void value_type; typedef void difference_type; typedef void pointer; typedef void reference; insert_iterator(Container& x, typename Container::iterator i, bool is_previous = false) : container(&x), iter(is_previous ? i : x.previous(i)){ } insert_iterator& operator=(const typename Container::value_type& value) { iter = container->insert_after(iter, value); return *this; } insert_iterator& operator*(){ return *this; } insert_iterator& operator++(){ return *this; } insert_iterator& operator++(int){ return *this; } }; } //namespace std; #include #endif /* BOOST_INTERPROCESS_SLIST_HPP */