///////////////////////////////////////////////////////////////////////////// // // (C) Copyright Daniel K. O. 2005. // (C) Copyright Ion Gaztanaga 2007. // // Distributed under the Boost Software License, Version 1.0. // (See accompanying file LICENSE_1_0.txt or copy at // http://www.boost.org/LICENSE_1_0.txt) // // See http://www.boost.org/libs/intrusive for documentation. // ///////////////////////////////////////////////////////////////////////////// #ifndef BOOST_INTRUSIVE_AVLTREE_ALGORITHMS_HPP #define BOOST_INTRUSIVE_AVLTREE_ALGORITHMS_HPP #include #include #include #include #include #include #include namespace boost { namespace intrusive { //! avltree_algorithms is configured with a NodeTraits class, which encapsulates the //! information about the node to be manipulated. NodeTraits must support the //! following interface: //! //! Typedefs: //! //! node: The type of the node that forms the circular list //! //! node_ptr: A pointer to a node //! //! const_node_ptr: A pointer to a const node //! //! balance: The type of the balance factor //! //! Static functions: //! //! static node_ptr get_parent(const_node_ptr n); //! //! static void set_parent(node_ptr n, node_ptr parent); //! //! static node_ptr get_left(const_node_ptr n); //! //! static void set_left(node_ptr n, node_ptr left); //! //! static node_ptr get_right(const_node_ptr n); //! //! static void set_right(node_ptr n, node_ptr right); //! //! static balance get_balance(const_node_ptr n); //! //! static void set_balance(node_ptr n, balance b); //! //! static balance negative(); //! //! static balance zero(); //! //! static balance positive(); template class avltree_algorithms { public: typedef NodeTraits node_traits; typedef typename NodeTraits::node_ptr node_ptr; typedef typename NodeTraits::const_node_ptr const_node_ptr; typedef typename NodeTraits::balance balance; /// @cond private: typedef typename NodeTraits::node node; typedef detail::tree_algorithms tree_algorithms; template struct avltree_node_cloner : private detail::ebo_functor_holder { typedef detail::ebo_functor_holder base_t; avltree_node_cloner(F f) : base_t(f) {} node_ptr operator()(node_ptr p) { node_ptr n = base_t::get()(p); NodeTraits::set_balance(n, NodeTraits::get_balance(p)); return n; } }; struct avltree_erase_fixup { void operator()(node_ptr to_erase, node_ptr successor) { NodeTraits::set_balance(successor, NodeTraits::get_balance(to_erase)); } }; static node_ptr uncast(const_node_ptr ptr) { return node_ptr(const_cast(::boost::intrusive::detail::get_pointer(ptr))); } /// @endcond public: static node_ptr begin_node(const_node_ptr header) { return tree_algorithms::begin_node(header); } static node_ptr end_node(const_node_ptr header) { return tree_algorithms::end_node(header); } //! This type is the information that will be //! filled by insert_unique_check typedef typename tree_algorithms::insert_commit_data insert_commit_data; //! Requires: header1 and header2 must be the header nodes //! of two trees. //! //! Effects: Swaps two trees. After the function header1 will contain //! links to the second tree and header2 will have links to the first tree. //! //! Complexity: Constant. //! //! Throws: Nothing. static void swap_tree(node_ptr header1, node_ptr header2) { return tree_algorithms::swap_tree(header1, header2); } //! Requires: node1 and node2 can't be header nodes //! of two trees. //! //! Effects: Swaps two nodes. After the function node1 will be inserted //! in the position node2 before the function. node2 will be inserted in the //! position node1 had before the function. //! //! Complexity: Logarithmic. //! //! Throws: Nothing. //! //! Note: This function will break container ordering invariants if //! node1 and node2 are not equivalent according to the ordering rules. //! //!Experimental function static void swap_nodes(node_ptr node1, node_ptr node2) { if(node1 == node2) return; node_ptr header1(tree_algorithms::get_header(node1)), header2(tree_algorithms::get_header(node2)); swap_nodes(node1, header1, node2, header2); } //! Requires: node1 and node2 can't be header nodes //! of two trees with header header1 and header2. //! //! Effects: Swaps two nodes. After the function node1 will be inserted //! in the position node2 before the function. node2 will be inserted in the //! position node1 had before the function. //! //! Complexity: Constant. //! //! Throws: Nothing. //! //! Note: This function will break container ordering invariants if //! node1 and node2 are not equivalent according to the ordering rules. //! //!Experimental function static void swap_nodes(node_ptr node1, node_ptr header1, node_ptr node2, node_ptr header2) { if(node1 == node2) return; tree_algorithms::swap_nodes(node1, header1, node2, header2); //Swap balance balance c = NodeTraits::get_balance(node1); NodeTraits::set_balance(node1, NodeTraits::get_balance(node2)); NodeTraits::set_balance(node2, c); } //! Requires: node_to_be_replaced must be inserted in a tree //! and new_node must not be inserted in a tree. //! //! Effects: Replaces node_to_be_replaced in its position in the //! tree with new_node. The tree does not need to be rebalanced //! //! Complexity: Logarithmic. //! //! Throws: Nothing. //! //! Note: This function will break container ordering invariants if //! new_node is not equivalent to node_to_be_replaced according to the //! ordering rules. This function is faster than erasing and inserting //! the node, since no rebalancing and comparison is needed. //! //!Experimental function static void replace_node(node_ptr node_to_be_replaced, node_ptr new_node) { if(node_to_be_replaced == new_node) return; replace_node(node_to_be_replaced, tree_algorithms::get_header(node_to_be_replaced), new_node); } //! Requires: node_to_be_replaced must be inserted in a tree //! with header "header" and new_node must not be inserted in a tree. //! //! Effects: Replaces node_to_be_replaced in its position in the //! tree with new_node. The tree does not need to be rebalanced //! //! Complexity: Constant. //! //! Throws: Nothing. //! //! Note: This function will break container ordering invariants if //! new_node is not equivalent to node_to_be_replaced according to the //! ordering rules. This function is faster than erasing and inserting //! the node, since no rebalancing or comparison is needed. //! //!Experimental function static void replace_node(node_ptr node_to_be_replaced, node_ptr header, node_ptr new_node) { tree_algorithms::replace_node(node_to_be_replaced, header, new_node); NodeTraits::set_balance(new_node, NodeTraits::get_balance(node_to_be_replaced)); } //! Requires: node is a tree node but not the header. //! //! Effects: Unlinks the node and rebalances the tree. //! //! Complexity: Average complexity is constant time. //! //! Throws: Nothing. static void unlink(node_ptr node) { node_ptr x = NodeTraits::get_parent(node); if(x){ while(!is_header(x)) x = NodeTraits::get_parent(x); erase(x, node); } } //! Requires: header is the header of a tree. //! //! Effects: Unlinks the leftmost node from the tree, and //! updates the header link to the new leftmost node. //! //! Complexity: Average complexity is constant time. //! //! Throws: Nothing. //! //! Notes: This function breaks the tree and the tree can //! only be used for more unlink_leftmost_without_rebalance calls. //! This function is normally used to achieve a step by step //! controlled destruction of the tree. static node_ptr unlink_leftmost_without_rebalance(node_ptr header) { return tree_algorithms::unlink_leftmost_without_rebalance(header); } //! Requires: node is a node of the tree or an node initialized //! by init(...). //! //! Effects: Returns true if the node is initialized by init(). //! //! Complexity: Constant time. //! //! Throws: Nothing. static bool unique(const_node_ptr node) { return tree_algorithms::unique(node); } //! Requires: node is a node of the tree but it's not the header. //! //! Effects: Returns the number of nodes of the subtree. //! //! Complexity: Linear time. //! //! Throws: Nothing. static std::size_t count(const_node_ptr node) { return tree_algorithms::count(node); } //! Requires: header is the header node of the tree. //! //! Effects: Returns the number of nodes above the header. //! //! Complexity: Linear time. //! //! Throws: Nothing. static std::size_t size(const_node_ptr header) { return tree_algorithms::size(header); } //! Requires: p is a node from the tree except the header. //! //! Effects: Returns the next node of the tree. //! //! Complexity: Average constant time. //! //! Throws: Nothing. static node_ptr next_node(node_ptr p) { return tree_algorithms::next_node(p); } //! Requires: p is a node from the tree except the leftmost node. //! //! Effects: Returns the previous node of the tree. //! //! Complexity: Average constant time. //! //! Throws: Nothing. static node_ptr prev_node(node_ptr p) { return tree_algorithms::prev_node(p); } //! Requires: node must not be part of any tree. //! //! Effects: After the function unique(node) == true. //! //! Complexity: Constant. //! //! Throws: Nothing. //! //! Nodes: If node is inserted in a tree, this function corrupts the tree. static void init(node_ptr node) { tree_algorithms::init(node); } //! Requires: node must not be part of any tree. //! //! Effects: Initializes the header to represent an empty tree. //! unique(header) == true. //! //! Complexity: Constant. //! //! Throws: Nothing. //! //! Nodes: If node is inserted in a tree, this function corrupts the tree. static void init_header(node_ptr header) { tree_algorithms::init_header(header); NodeTraits::set_balance(header, NodeTraits::zero()); } //! Requires: header must be the header of a tree, z a node //! of that tree and z != header. //! //! Effects: Erases node "z" from the tree with header "header". //! //! Complexity: Amortized constant time. //! //! Throws: Nothing. static node_ptr erase(node_ptr header, node_ptr z) { typename tree_algorithms::data_for_rebalance info; tree_algorithms::erase(header, z, avltree_erase_fixup(), info); node_ptr x = info.x; node_ptr x_parent = info.x_parent; //Rebalance avltree rebalance_after_erasure(header, x, x_parent); return z; } //! Requires: "cloner" must be a function //! object taking a node_ptr and returning a new cloned node of it. "disposer" must //! take a node_ptr and shouldn't throw. //! //! Effects: First empties target tree calling //! void disposer::operator()(node_ptr) for every node of the tree //! except the header. //! //! Then, duplicates the entire tree pointed by "source_header" cloning each //! source node with node_ptr Cloner::operator()(node_ptr) to obtain //! the nodes of the target tree. If "cloner" throws, the cloned target nodes //! are disposed using void disposer(node_ptr). //! //! Complexity: Linear to the number of element of the source tree plus the. //! number of elements of tree target tree when calling this function. //! //! Throws: If cloner functor throws. If this happens target nodes are disposed. template static void clone (const_node_ptr source_header, node_ptr target_header, Cloner cloner, Disposer disposer) { avltree_node_cloner new_cloner(cloner); tree_algorithms::clone(source_header, target_header, new_cloner, disposer); } //! Requires: "disposer" must be an object function //! taking a node_ptr parameter and shouldn't throw. //! //! Effects: Empties the target tree calling //! void disposer::operator()(node_ptr) for every node of the tree //! except the header. //! //! Complexity: Linear to the number of element of the source tree plus the. //! number of elements of tree target tree when calling this function. //! //! Throws: If cloner functor throws. If this happens target nodes are disposed. template static void clear_and_dispose(node_ptr header, Disposer disposer) { tree_algorithms::clear_and_dispose(header, disposer); } //! Requires: "header" must be the header node of a tree. //! KeyNodePtrCompare is a function object that induces a strict weak //! ordering compatible with the strict weak ordering used to create the //! the tree. KeyNodePtrCompare can compare KeyType with tree's node_ptrs. //! //! Effects: Returns an node_ptr to the first element that is //! not less than "key" according to "comp" or "header" if that element does //! not exist. //! //! Complexity: Logarithmic. //! //! Throws: If "comp" throws. template static node_ptr lower_bound (const_node_ptr header, const KeyType &key, KeyNodePtrCompare comp) { return tree_algorithms::lower_bound(header, key, comp); } //! Requires: "header" must be the header node of a tree. //! KeyNodePtrCompare is a function object that induces a strict weak //! ordering compatible with the strict weak ordering used to create the //! the tree. KeyNodePtrCompare can compare KeyType with tree's node_ptrs. //! //! Effects: Returns an node_ptr to the first element that is greater //! than "key" according to "comp" or "header" if that element does not exist. //! //! Complexity: Logarithmic. //! //! Throws: If "comp" throws. template static node_ptr upper_bound (const_node_ptr header, const KeyType &key, KeyNodePtrCompare comp) { return tree_algorithms::upper_bound(header, key, comp); } //! Requires: "header" must be the header node of a tree. //! KeyNodePtrCompare is a function object that induces a strict weak //! ordering compatible with the strict weak ordering used to create the //! the tree. KeyNodePtrCompare can compare KeyType with tree's node_ptrs. //! //! Effects: Returns an node_ptr to the element that is equivalent to //! "key" according to "comp" or "header" if that element does not exist. //! //! Complexity: Logarithmic. //! //! Throws: If "comp" throws. template static node_ptr find (const_node_ptr header, const KeyType &key, KeyNodePtrCompare comp) { return tree_algorithms::find(header, key, comp); } //! Requires: "header" must be the header node of a tree. //! KeyNodePtrCompare is a function object that induces a strict weak //! ordering compatible with the strict weak ordering used to create the //! the tree. KeyNodePtrCompare can compare KeyType with tree's node_ptrs. //! //! Effects: Returns an a pair of node_ptr delimiting a range containing //! all elements that are equivalent to "key" according to "comp" or an //! empty range that indicates the position where those elements would be //! if they there are no equivalent elements. //! //! Complexity: Logarithmic. //! //! Throws: If "comp" throws. template static std::pair equal_range (const_node_ptr header, const KeyType &key, KeyNodePtrCompare comp) { return tree_algorithms::equal_range(header, key, comp); } //! Requires: "h" must be the header node of a tree. //! NodePtrCompare is a function object that induces a strict weak //! ordering compatible with the strict weak ordering used to create the //! the tree. NodePtrCompare compares two node_ptrs. //! //! Effects: Inserts new_node into the tree before the upper bound //! according to "comp". //! //! Complexity: Average complexity for insert element is at //! most logarithmic. //! //! Throws: If "comp" throws. template static node_ptr insert_equal_upper_bound (node_ptr h, node_ptr new_node, NodePtrCompare comp) { tree_algorithms::insert_equal_upper_bound(h, new_node, comp); rebalance_after_insertion(h, new_node); return new_node; } //! Requires: "h" must be the header node of a tree. //! NodePtrCompare is a function object that induces a strict weak //! ordering compatible with the strict weak ordering used to create the //! the tree. NodePtrCompare compares two node_ptrs. //! //! Effects: Inserts new_node into the tree before the lower bound //! according to "comp". //! //! Complexity: Average complexity for insert element is at //! most logarithmic. //! //! Throws: If "comp" throws. template static node_ptr insert_equal_lower_bound (node_ptr h, node_ptr new_node, NodePtrCompare comp) { tree_algorithms::insert_equal_lower_bound(h, new_node, comp); rebalance_after_insertion(h, new_node); return new_node; } //! Requires: "header" must be the header node of a tree. //! NodePtrCompare is a function object that induces a strict weak //! ordering compatible with the strict weak ordering used to create the //! the tree. NodePtrCompare compares two node_ptrs. "hint" is node from //! the "header"'s tree. //! //! Effects: Inserts new_node into the tree, using "hint" as a hint to //! where it will be inserted. If "hint" is the upper_bound //! the insertion takes constant time (two comparisons in the worst case). //! //! Complexity: Logarithmic in general, but it is amortized //! constant time if new_node is inserted immediately before "hint". //! //! Throws: If "comp" throws. template static node_ptr insert_equal (node_ptr header, node_ptr hint, node_ptr new_node, NodePtrCompare comp) { tree_algorithms::insert_equal(header, hint, new_node, comp); rebalance_after_insertion(header, new_node); return new_node; } //! Requires: "header" must be the header node of a tree. //! KeyNodePtrCompare is a function object that induces a strict weak //! ordering compatible with the strict weak ordering used to create the //! the tree. NodePtrCompare compares KeyType with a node_ptr. //! //! Effects: Checks if there is an equivalent node to "key" in the //! tree according to "comp" and obtains the needed information to realize //! a constant-time node insertion if there is no equivalent node. //! //! Returns: If there is an equivalent value //! returns a pair containing a node_ptr to the already present node //! and false. If there is not equivalent key can be inserted returns true //! in the returned pair's boolean and fills "commit_data" that is meant to //! be used with the "insert_commit" function to achieve a constant-time //! insertion function. //! //! Complexity: Average complexity is at most logarithmic. //! //! Throws: If "comp" throws. //! //! Notes: This function is used to improve performance when constructing //! a node is expensive and the user does not want to have two equivalent nodes //! in the tree: if there is an equivalent value //! the constructed object must be discarded. Many times, the part of the //! node that is used to impose the order is much cheaper to construct //! than the node and this function offers the possibility to use that part //! to check if the insertion will be successful. //! //! If the check is successful, the user can construct the node and use //! "insert_commit" to insert the node in constant-time. This gives a total //! logarithmic complexity to the insertion: check(O(log(N)) + commit(O(1)). //! //! "commit_data" remains valid for a subsequent "insert_unique_commit" only //! if no more objects are inserted or erased from the set. template static std::pair insert_unique_check (const_node_ptr header, const KeyType &key ,KeyNodePtrCompare comp, insert_commit_data &commit_data) { return tree_algorithms::insert_unique_check(header, key, comp, commit_data); } //! Requires: "header" must be the header node of a tree. //! KeyNodePtrCompare is a function object that induces a strict weak //! ordering compatible with the strict weak ordering used to create the //! the tree. NodePtrCompare compares KeyType with a node_ptr. //! "hint" is node from the "header"'s tree. //! //! Effects: Checks if there is an equivalent node to "key" in the //! tree according to "comp" using "hint" as a hint to where it should be //! inserted and obtains the needed information to realize //! a constant-time node insertion if there is no equivalent node. //! If "hint" is the upper_bound the function has constant time //! complexity (two comparisons in the worst case). //! //! Returns: If there is an equivalent value //! returns a pair containing a node_ptr to the already present node //! and false. If there is not equivalent key can be inserted returns true //! in the returned pair's boolean and fills "commit_data" that is meant to //! be used with the "insert_commit" function to achieve a constant-time //! insertion function. //! //! Complexity: Average complexity is at most logarithmic, but it is //! amortized constant time if new_node should be inserted immediately before "hint". //! //! Throws: If "comp" throws. //! //! Notes: This function is used to improve performance when constructing //! a node is expensive and the user does not want to have two equivalent nodes //! in the tree: if there is an equivalent value //! the constructed object must be discarded. Many times, the part of the //! node that is used to impose the order is much cheaper to construct //! than the node and this function offers the possibility to use that part //! to check if the insertion will be successful. //! //! If the check is successful, the user can construct the node and use //! "insert_commit" to insert the node in constant-time. This gives a total //! logarithmic complexity to the insertion: check(O(log(N)) + commit(O(1)). //! //! "commit_data" remains valid for a subsequent "insert_unique_commit" only //! if no more objects are inserted or erased from the set. template static std::pair insert_unique_check (const_node_ptr header, node_ptr hint, const KeyType &key ,KeyNodePtrCompare comp, insert_commit_data &commit_data) { return tree_algorithms::insert_unique_check(header, hint, key, comp, commit_data); } //! Requires: "header" must be the header node of a tree. //! "commit_data" must have been obtained from a previous call to //! "insert_unique_check". No objects should have been inserted or erased //! from the set between the "insert_unique_check" that filled "commit_data" //! and the call to "insert_commit". //! //! //! Effects: Inserts new_node in the set using the information obtained //! from the "commit_data" that a previous "insert_check" filled. //! //! Complexity: Constant time. //! //! Throws: Nothing. //! //! Notes: This function has only sense if a "insert_unique_check" has been //! previously executed to fill "commit_data". No value should be inserted or //! erased between the "insert_check" and "insert_commit" calls. static void insert_unique_commit (node_ptr header, node_ptr new_value, const insert_commit_data &commit_data) { tree_algorithms::insert_unique_commit(header, new_value, commit_data); rebalance_after_insertion(header, new_value); } /// @cond private: //! Requires: p is a node of a tree. //! //! Effects: Returns true if p is the header of the tree. //! //! Complexity: Constant. //! //! Throws: Nothing. static bool is_header(const_node_ptr p) { return NodeTraits::get_balance(p) == NodeTraits::zero() && tree_algorithms::is_header(p); } static void rebalance_after_erasure(node_ptr header, node_ptr x, node_ptr x_parent) { node_ptr root = NodeTraits::get_parent(header); while (x != root) { const balance x_parent_balance = NodeTraits::get_balance(x_parent); if(x_parent_balance == NodeTraits::zero()){ NodeTraits::set_balance(x_parent, (x == NodeTraits::get_right(x_parent) ? NodeTraits::negative() : NodeTraits::positive())); break; // the height didn't change, let's stop here } else if(x_parent_balance == NodeTraits::negative()){ if (x == NodeTraits::get_left(x_parent)) { NodeTraits::set_balance(x_parent, NodeTraits::zero()); // balanced x = x_parent; x_parent = NodeTraits::get_parent(x_parent); } else { // x is right child // a is left child node_ptr a = NodeTraits::get_left(x_parent); assert(a); if (NodeTraits::get_balance(a) == NodeTraits::positive()) { // a MUST have a right child assert(NodeTraits::get_right(a)); rotate_left_right(x_parent, root); x = NodeTraits::get_parent(x_parent); x_parent = NodeTraits::get_parent(x); } else { rotate_right(x_parent, root); x = NodeTraits::get_parent(x_parent); x_parent = NodeTraits::get_parent(x); } // if changed from negative to NodeTraits::positive(), no need to check above if (NodeTraits::get_balance(x) == NodeTraits::positive()){ break; } } } else if(x_parent_balance == NodeTraits::positive()){ if (x == NodeTraits::get_right(x_parent)) { NodeTraits::set_balance(x_parent, NodeTraits::zero()); // balanced x = x_parent; x_parent = NodeTraits::get_parent(x_parent); } else { // x is left child // a is right child node_ptr a = NodeTraits::get_right(x_parent); assert(a); if (NodeTraits::get_balance(a) == NodeTraits::negative()) { // a MUST have then a left child assert(NodeTraits::get_left(a)); rotate_right_left(x_parent, root); x = NodeTraits::get_parent(x_parent); x_parent = NodeTraits::get_parent(x); } else { rotate_left(x_parent, root); x = NodeTraits::get_parent(x_parent); x_parent = NodeTraits::get_parent(x); } // if changed from NodeTraits::positive() to negative, no need to check above if (NodeTraits::get_balance(x) == NodeTraits::negative()){ break; } } } else{ assert(false); // never reached } } NodeTraits::set_parent(header, root); } static void rebalance_after_insertion(node_ptr header, node_ptr x) { node_ptr root = NodeTraits::get_parent(header); NodeTraits::set_balance(x, NodeTraits::zero()); // Rebalance. while (x != root){ const balance x_parent_balance = NodeTraits::get_balance(NodeTraits::get_parent(x)); if(x_parent_balance == NodeTraits::zero()){ // if x is left, parent will have parent->bal_factor = negative // else, parent->bal_factor = NodeTraits::positive() NodeTraits::set_balance( NodeTraits::get_parent(x) , x == NodeTraits::get_left(NodeTraits::get_parent(x)) ? NodeTraits::negative() : NodeTraits::positive() ); x = NodeTraits::get_parent(x); } else if(x_parent_balance == NodeTraits::positive()){ // if x is a left child, parent->bal_factor = zero if (x == NodeTraits::get_left(NodeTraits::get_parent(x))) NodeTraits::set_balance(NodeTraits::get_parent(x), NodeTraits::zero()); else{ // x is a right child, needs rebalancing if (NodeTraits::get_balance(x) == NodeTraits::negative()) rotate_right_left(NodeTraits::get_parent(x), root); else rotate_left(NodeTraits::get_parent(x), root); } break; } else if(x_parent_balance == NodeTraits::negative()){ // if x is a left child, needs rebalancing if (x == NodeTraits::get_left(NodeTraits::get_parent(x))) { if (NodeTraits::get_balance(x) == NodeTraits::positive()) rotate_left_right(NodeTraits::get_parent(x), root); else rotate_right(NodeTraits::get_parent(x), root); } else NodeTraits::set_balance(NodeTraits::get_parent(x), NodeTraits::zero()); break; } else{ assert(false); // never reached } } NodeTraits::set_parent(header, root); } static void rotate_left_right(node_ptr a, node_ptr &root) { // | | // // a(-2) c // // / \ / \ // // / \ ==> / \ // // (pos)b [g] b a // // / \ / \ / \ // // [d] c [d] e f [g] // // / \ // // e f // node_ptr b = NodeTraits::get_left(a), c = NodeTraits::get_right(b); // switch NodeTraits::set_left(a, NodeTraits::get_right(c)); NodeTraits::set_right(b, NodeTraits::get_left(c)); NodeTraits::set_right(c, a); NodeTraits::set_left(c, b); // set the parents NodeTraits::set_parent(c, NodeTraits::get_parent(a)); NodeTraits::set_parent(a, c); NodeTraits::set_parent(b, c); if (NodeTraits::get_left(a)) // do we have f? NodeTraits::set_parent(NodeTraits::get_left(a), a); if (NodeTraits::get_right(b)) // do we have e? NodeTraits::set_parent(NodeTraits::get_right(b), b); if (a==root) root = c; else // a had a parent, his child is now c if (a == NodeTraits::get_left(NodeTraits::get_parent(c))) NodeTraits::set_left(NodeTraits::get_parent(c), c); else NodeTraits::set_right(NodeTraits::get_parent(c), c); // balancing... const balance c_balance = NodeTraits::get_balance(c); if(c_balance == NodeTraits::negative()){ NodeTraits::set_balance(a, NodeTraits::positive()); NodeTraits::set_balance(b, NodeTraits::zero()); } else if(c_balance == NodeTraits::zero()){ NodeTraits::set_balance(a, NodeTraits::zero()); NodeTraits::set_balance(b, NodeTraits::zero()); } else if(c_balance == NodeTraits::positive()){ NodeTraits::set_balance(a, NodeTraits::zero()); NodeTraits::set_balance(b, NodeTraits::negative()); } else{ assert(false); // never reached } NodeTraits::set_balance(c, NodeTraits::zero()); } static void rotate_right_left(node_ptr a, node_ptr &root) { // | | // // a(pos) c // // / \ / \ // // / \ / \ // // [d] b(neg) ==> a b // // / \ / \ / \ // // c [g] [d] e f [g] // // / \ // // e f // node_ptr b = NodeTraits::get_right(a), c = NodeTraits::get_left(b); // switch NodeTraits::set_right(a, NodeTraits::get_left(c)); NodeTraits::set_left(b, NodeTraits::get_right(c)); NodeTraits::set_left(c, a); NodeTraits::set_right(c, b); // set the parents NodeTraits::set_parent(c, NodeTraits::get_parent(a)); NodeTraits::set_parent(a, c); NodeTraits::set_parent(b, c); if (NodeTraits::get_right(a)) // do we have e? NodeTraits::set_parent(NodeTraits::get_right(a), a); if (NodeTraits::get_left(b)) // do we have f? NodeTraits::set_parent(NodeTraits::get_left(b), b); if (a==root) root = c; else // a had a parent, his child is now c if (a == NodeTraits::get_left(NodeTraits::get_parent(c))) NodeTraits::set_left(NodeTraits::get_parent(c), c); else NodeTraits::set_right(NodeTraits::get_parent(c), c); // balancing... const balance c_balance = NodeTraits::get_balance(c); if(c_balance == NodeTraits::negative()){ NodeTraits::set_balance(a, NodeTraits::zero()); NodeTraits::set_balance(b, NodeTraits::positive()); } else if(c_balance == NodeTraits::zero()){ NodeTraits::set_balance(a, NodeTraits::zero()); NodeTraits::set_balance(b, NodeTraits::zero()); } else if(c_balance == NodeTraits::positive()){ NodeTraits::set_balance(a, NodeTraits::negative()); NodeTraits::set_balance(b, NodeTraits::zero()); } else{ assert(false); } NodeTraits::set_balance(c, NodeTraits::zero()); } static void rotate_left(node_ptr x, node_ptr & root) { // | | // // x(2) y(0) // // / \ ==> / \ // // n[a] y(1)n+2 n+1(0)x [c]n+1 // // / \ / \ // // n[b] [c]n+1 n[a] [b]n // node_ptr y = NodeTraits::get_right(x); // switch NodeTraits::set_right(x, NodeTraits::get_left(y)); NodeTraits::set_left(y, x); // rearrange parents NodeTraits::set_parent(y, NodeTraits::get_parent(x)); NodeTraits::set_parent(x, y); // do we have [b]? if (NodeTraits::get_right(x)) NodeTraits::set_parent(NodeTraits::get_right(x), x); if (x == root) root = y; else // need to reparent y if (NodeTraits::get_left(NodeTraits::get_parent(y)) == x) NodeTraits::set_left(NodeTraits::get_parent(y), y); else NodeTraits::set_right(NodeTraits::get_parent(y), y); // reset the balancing factor if (NodeTraits::get_balance(y) == NodeTraits::positive()) { NodeTraits::set_balance(x, NodeTraits::zero()); NodeTraits::set_balance(y, NodeTraits::zero()); } else { // this doesn't happen during insertions NodeTraits::set_balance(x, NodeTraits::positive()); NodeTraits::set_balance(y, NodeTraits::negative()); } } static void rotate_right(node_ptr x, node_ptr &root) { node_ptr y = NodeTraits::get_left(x); // switch NodeTraits::set_left(x, NodeTraits::get_right(y)); NodeTraits::set_right(y, x); // rearrange parents NodeTraits::set_parent(y, NodeTraits::get_parent(x)); NodeTraits::set_parent(x, y); // do we have [b]? if (NodeTraits::get_left(x)) NodeTraits::set_parent(NodeTraits::get_left(x), x); if (x == root) root = y; else // need to reparent y if (NodeTraits::get_left(NodeTraits::get_parent(y)) == x) NodeTraits::set_left(NodeTraits::get_parent(y), y); else NodeTraits::set_right(NodeTraits::get_parent(y), y); // reset the balancing factor if (NodeTraits::get_balance(y) == NodeTraits::negative()) { NodeTraits::set_balance(x, NodeTraits::zero()); NodeTraits::set_balance(y, NodeTraits::zero()); } else { // this doesn't happen during insertions NodeTraits::set_balance(x, NodeTraits::negative()); NodeTraits::set_balance(y, NodeTraits::positive()); } } /// @endcond }; } //namespace intrusive } //namespace boost #include #endif //BOOST_INTRUSIVE_AVLTREE_ALGORITHMS_HPP