///////////////////////////////////////////////////////////////////////////// // // (C) Copyright Olaf Krzikalla 2004-2006. // (C) Copyright Ion Gaztanaga 2006-2007 // // Distributed under the Boost Software License, Version 1.0. // (See accompanying file LICENSE_1_0.txt or copy at // http://www.boost.org/LICENSE_1_0.txt) // // See http://www.boost.org/libs/intrusive for documentation. // ///////////////////////////////////////////////////////////////////////////// #ifndef BOOST_INTRUSIVE_SLIST_HPP #define BOOST_INTRUSIVE_SLIST_HPP #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include //std::size_t #include //std::pair namespace boost { namespace intrusive { /// @cond template struct internal_default_slist_hook { template static detail::one test(...); template static detail::two test(typename U::default_slist_hook* = 0); static const bool value = sizeof(test(0)) == sizeof(detail::two); }; template struct get_default_slist_hook { typedef typename T::default_slist_hook type; }; template struct slistopt { typedef ValueTraits value_traits; typedef SizeType size_type; static const bool constant_time_size = ConstantTimeSize; static const bool linear = Linear; static const bool cache_last = CacheLast; }; template struct root_plus_last { Node root_; NodePtr last_; }; template struct root_plus_last { Node root_; }; template struct slist_defaults : pack_options < none , base_hook < typename detail::eval_if_c < internal_default_slist_hook::value , get_default_slist_hook , detail::identity >::type > , constant_time_size , linear , size_type , cache_last >::type {}; /// @endcond //! The class template slist is an intrusive container, that encapsulates //! a singly-linked list. You can use such a list to squeeze the last bit //! of performance from your application. Unfortunately, the little gains //! come with some huge drawbacks. A lot of member functions can't be //! implemented as efficiently as for standard containers. To overcome //! this limitation some other member functions with rather unusual semantics //! have to be introduced. //! //! The template parameter \c T is the type to be managed by the container. //! The user can specify additional options and if no options are provided //! default options are used. //! //! The container supports the following options: //! \c base_hook<>/member_hook<>/value_traits<>, //! \c constant_time_size<>, \c size_type<>, //! \c linear<> and \c cache_last<>. //! //! The iterators of slist are forward iterators. slist provides a static //! function called "previous" to compute the previous iterator of a given iterator. //! This function has linear complexity. To improve the usability esp. with //! the '*_after' functions, ++end() == begin() and previous(begin()) == end() //! are defined. An new special function "before_begin()" is defined, which returns //! an iterator that points one less the beginning of the list: ++before_begin() == begin() #ifdef BOOST_INTRUSIVE_DOXYGEN_INVOKED template #else template #endif class slist_impl { //Public typedefs public: typedef typename Config::value_traits value_traits; /// @cond static const bool external_value_traits = detail::external_value_traits_is_true::value; typedef typename detail::eval_if_c < external_value_traits , detail::eval_value_traits , detail::identity >::type real_value_traits; /// @endcond typedef typename real_value_traits::pointer pointer; typedef typename real_value_traits::const_pointer const_pointer; typedef typename std::iterator_traits::value_type value_type; typedef typename std::iterator_traits::reference reference; typedef typename std::iterator_traits::reference const_reference; typedef typename std::iterator_traits::difference_type difference_type; typedef typename Config::size_type size_type; typedef slist_iterator iterator; typedef slist_iterator const_iterator; typedef typename real_value_traits::node_traits node_traits; typedef typename node_traits::node node; typedef typename boost::pointer_to_other ::type node_ptr; typedef typename boost::pointer_to_other ::type const_node_ptr; typedef typename detail::if_c < Config::linear , linear_slist_algorithms , circular_slist_algorithms >::type node_algorithms; static const bool constant_time_size = Config::constant_time_size; static const bool stateful_value_traits = detail::store_cont_ptr_on_it::value; static const bool linear = Config::linear; static const bool cache_last = Config::cache_last; /// @cond private: typedef detail::size_holder size_traits; //! This class is //! non-copyable slist_impl (const slist_impl&); //! This class is //! non-asignable slist_impl &operator =(const slist_impl&); enum { safemode_or_autounlink = (int)real_value_traits::link_mode == (int)auto_unlink || (int)real_value_traits::link_mode == (int)safe_link }; //Constant-time size is incompatible with auto-unlink hooks! BOOST_STATIC_ASSERT(!(constant_time_size && ((int)real_value_traits::link_mode == (int)auto_unlink))); //Linear singly linked lists are incompatible with auto-unlink hooks! BOOST_STATIC_ASSERT(!(linear && ((int)real_value_traits::link_mode == (int)auto_unlink))); //A list with cached last node is incompatible with auto-unlink hooks! BOOST_STATIC_ASSERT(!(cache_last && ((int)real_value_traits::link_mode == (int)auto_unlink))); node_ptr get_end_node() { return node_ptr(linear ? 0 : this->get_root_node()); } const_node_ptr get_end_node() const { return const_node_ptr(linear ? 0 : this->get_root_node()); } node_ptr get_root_node() { return node_ptr(&data_.root_plus_size_.root_); } const_node_ptr get_root_node() const { return const_node_ptr(&data_.root_plus_size_.root_); } node_ptr get_last_node() { return this->get_last_node(detail::bool_()); } const_node_ptr get_last_node() const { return this->get_last_node(detail::bool_()); } void set_last_node(node_ptr n) { return this->set_last_node(n, detail::bool_()); } node_ptr get_last_node(detail::bool_) { return node_ptr(0); } const_node_ptr get_last_node(detail::bool_) const { return const_node_ptr(0); } void set_last_node(node_ptr, detail::bool_) {} node_ptr get_last_node(detail::bool_) { return node_ptr(data_.root_plus_size_.last_); } const_node_ptr get_last_node(detail::bool_) const { return const_node_ptr(data_.root_plus_size_.last_); } void set_last_node(node_ptr n, detail::bool_) { data_.root_plus_size_.last_ = n; } static node_ptr uncast(const_node_ptr ptr) { return node_ptr(const_cast(detail::get_pointer(ptr))); } void set_default_constructed_state() { node_algorithms::init_header(this->get_root_node()); this->priv_size_traits().set_size(size_type(0)); if(cache_last){ this->set_last_node(this->get_root_node()); } } struct root_plus_size : public size_traits , public root_plus_last {}; struct data_t : public slist_impl::value_traits { typedef typename slist_impl::value_traits value_traits; data_t(const value_traits &val_traits) : value_traits(val_traits) {} root_plus_size root_plus_size_; } data_; size_traits &priv_size_traits() { return data_.root_plus_size_; } const size_traits &priv_size_traits() const { return data_.root_plus_size_; } const real_value_traits &get_real_value_traits(detail::bool_) const { return data_; } const real_value_traits &get_real_value_traits(detail::bool_) const { return data_.get_value_traits(*this); } real_value_traits &get_real_value_traits(detail::bool_) { return data_; } real_value_traits &get_real_value_traits(detail::bool_) { return data_.get_value_traits(*this); } /// @endcond public: const real_value_traits &get_real_value_traits() const { return this->get_real_value_traits(detail::bool_()); } real_value_traits &get_real_value_traits() { return this->get_real_value_traits(detail::bool_()); } public: //! Effects: constructs an empty list. //! //! Complexity: Constant //! //! Throws: If value_traits::node_traits::node //! constructor throws (this does not happen with predefined Boost.Intrusive hooks). slist_impl(const value_traits &v_traits = value_traits()) : data_(v_traits) { this->set_default_constructed_state(); } //! Requires: Dereferencing iterator must yield an lvalue of type value_type. //! //! Effects: Constructs a list equal to [first,last). //! //! Complexity: Linear in std::distance(b, e). No copy constructors are called. //! //! Throws: If value_traits::node_traits::node //! constructor throws (this does not happen with predefined Boost.Intrusive hooks). template slist_impl(Iterator b, Iterator e, const value_traits &v_traits = value_traits()) : data_(v_traits) { this->set_default_constructed_state(); this->insert_after(this->before_begin(), b, e); } //! Effects: If it's a safe-mode //! or auto-unlink value, the destructor does nothing //! (ie. no code is generated). Otherwise it detaches all elements from this. //! In this case the objects in the list are not deleted (i.e. no destructors //! are called), but the hooks according to the value_traits template parameter //! are set to their default value. //! //! Complexity: Linear to the number of elements in the list, if //! it's a safe-mode or auto-unlink value. Otherwise constant. ~slist_impl() { this->clear(); } //! Effects: Erases all the elements of the container. //! //! Throws: Nothing. //! //! Complexity: Linear to the number of elements of the list. //! if it's a safe-mode or auto-unlink value_type. Constant time otherwise. //! //! Note: Invalidates the iterators (but not the references) to the erased elements. void clear() { if(safemode_or_autounlink){ this->clear_and_dispose(detail::null_disposer()); } else{ this->set_default_constructed_state(); } } //! Requires: Disposer::operator()(pointer) shouldn't throw. //! //! Effects: Erases all the elements of the container //! Disposer::operator()(pointer) is called for the removed elements. //! //! Throws: Nothing. //! //! Complexity: Linear to the number of elements of the list. //! //! Note: Invalidates the iterators to the erased elements. template void clear_and_dispose(Disposer disposer) { iterator it(this->begin()), itend(this->end()); while(it != itend){ node_ptr to_erase(it.pointed_node()); ++it; if(safemode_or_autounlink) node_algorithms::init(to_erase); disposer(get_real_value_traits().to_value_ptr(to_erase)); } this->set_default_constructed_state(); } //! Requires: value must be an lvalue. //! //! Effects: Inserts the value in the front of the list. //! No copy constructors are called. //! //! Throws: Nothing. //! //! Complexity: Constant. //! //! Note: Does not affect the validity of iterators and references. void push_front(reference value) { node_ptr to_insert = get_real_value_traits().to_node_ptr(value); if(safemode_or_autounlink) BOOST_INTRUSIVE_SAFE_HOOK_DEFAULT_ASSERT(node_algorithms::inited(to_insert)); if(cache_last){ if(this->empty()){ this->set_last_node(to_insert); } } node_algorithms::link_after(this->get_root_node(), to_insert); this->priv_size_traits().increment(); } //! Requires: value must be an lvalue. //! //! Effects: Inserts the value in the back of the list. //! No copy constructors are called. //! //! Throws: Nothing. //! //! Complexity: Constant. //! //! Note: Does not affect the validity of iterators and references. //! This function is only available is cache_last<> is true. void push_back(reference value) { BOOST_STATIC_ASSERT((cache_last != 0)); this->insert_after(iterator(this->get_last_node(), this), value); } //! Effects: Erases the first element of the list. //! No destructors are called. //! //! Throws: Nothing. //! //! Complexity: Constant. //! //! Note: Invalidates the iterators (but not the references) to the erased element. void pop_front() { return this->pop_front_and_dispose(detail::null_disposer()); } //! Requires: Disposer::operator()(pointer) shouldn't throw. //! //! Effects: Erases the first element of the list. //! Disposer::operator()(pointer) is called for the removed element. //! //! Throws: Nothing. //! //! Complexity: Constant. //! //! Note: Invalidates the iterators to the erased element. template void pop_front_and_dispose(Disposer disposer) { node_ptr to_erase = node_traits::get_next(this->get_root_node()); node_algorithms::unlink_after(this->get_root_node()); this->priv_size_traits().decrement(); if(safemode_or_autounlink) node_algorithms::init(to_erase); disposer(get_real_value_traits().to_value_ptr(to_erase)); if(cache_last){ if(this->empty()){ this->set_last_node(this->get_root_node()); } } } //! Effects: Returns a reference to the first element of the list. //! //! Throws: Nothing. //! //! Complexity: Constant. reference front() { return *this->get_real_value_traits().to_value_ptr(node_traits::get_next(this->get_root_node())); } //! Effects: Returns a const_reference to the first element of the list. //! //! Throws: Nothing. //! //! Complexity: Constant. const_reference front() const { return *this->get_real_value_traits().to_value_ptr(uncast(node_traits::get_next(this->get_root_node()))); } //! Effects: Returns a reference to the last element of the list. //! //! Throws: Nothing. //! //! Complexity: Constant. //! //! Note: Does not affect the validity of iterators and references. //! This function is only available is cache_last<> is true. reference back() { BOOST_STATIC_ASSERT((cache_last != 0)); return *this->get_real_value_traits().to_value_ptr(this->get_last_node()); } //! Effects: Returns a const_reference to the last element of the list. //! //! Throws: Nothing. //! //! Complexity: Constant. //! //! Note: Does not affect the validity of iterators and references. //! This function is only available is cache_last<> is true. const_reference back() const { BOOST_STATIC_ASSERT((cache_last != 0)); return *this->get_real_value_traits().to_value_ptr(this->get_last_node()); } //! Effects: Returns an iterator to the first element contained in the list. //! //! Throws: Nothing. //! //! Complexity: Constant. iterator begin() { return iterator (node_traits::get_next(this->get_root_node()), this); } //! Effects: Returns a const_iterator to the first element contained in the list. //! //! Throws: Nothing. //! //! Complexity: Constant. const_iterator begin() const { return const_iterator (node_traits::get_next(this->get_root_node()), this); } //! Effects: Returns a const_iterator to the first element contained in the list. //! //! Throws: Nothing. //! //! Complexity: Constant. const_iterator cbegin() const { return const_iterator(node_traits::get_next(this->get_root_node()), this); } //! Effects: Returns an iterator to the end of the list. //! //! Throws: Nothing. //! //! Complexity: Constant. iterator end() { return iterator(this->get_end_node(), this); } //! Effects: Returns a const_iterator to the end of the list. //! //! Throws: Nothing. //! //! Complexity: Constant. const_iterator end() const { return const_iterator(uncast(this->get_end_node()), this); } //! Effects: Returns a const_iterator to the end of the list. //! //! Throws: Nothing. //! //! Complexity: Constant. const_iterator cend() const { return this->end(); } //! Effects: Returns an iterator that points to a position //! before the first element. Equivalent to "end()" //! //! Throws: Nothing. //! //! Complexity: Constant. iterator before_begin() { return iterator(this->get_root_node(), this); } //! Effects: Returns an iterator that points to a position //! before the first element. Equivalent to "end()" //! //! Throws: Nothing. //! //! Complexity: Constant. const_iterator before_begin() const { return const_iterator(uncast(this->get_root_node()), this); } //! Effects: Returns an iterator that points to a position //! before the first element. Equivalent to "end()" //! //! Throws: Nothing. //! //! Complexity: Constant. const_iterator cbefore_begin() const { return this->before_begin(); } //! Precondition: end_iterator must be a valid end iterator //! of slist. //! //! Effects: Returns a const reference to the slist associated to the end iterator //! //! Throws: Nothing. //! //! Complexity: Constant. static slist_impl &container_from_end_iterator(iterator end_iterator) { return slist_impl::priv_container_from_end_iterator(end_iterator); } //! Precondition: end_iterator must be a valid end const_iterator //! of slist. //! //! Effects: Returns a const reference to the slist associated to the end iterator //! //! Throws: Nothing. //! //! Complexity: Constant. static const slist_impl &container_from_end_iterator(const_iterator end_iterator) { return slist_impl::priv_container_from_end_iterator(end_iterator); } //! Effects: Returns the number of the elements contained in the list. //! //! Throws: Nothing. //! //! Complexity: Linear to the number of elements contained in the list. //! if constant_time_size is false. Constant time otherwise. //! //! Note: Does not affect the validity of iterators and references. size_type size() const { if(constant_time_size) return this->priv_size_traits().get_size(); else return node_algorithms::count(this->get_root_node()) - 1; } //! Effects: Returns true if the list contains no elements. //! //! Throws: Nothing. //! //! Complexity: Constant. //! //! Note: Does not affect the validity of iterators and references. bool empty() const { return node_algorithms::unique(this->get_root_node()); } //! Effects: Swaps the elements of x and *this. //! //! Throws: Nothing. //! //! Complexity: Linear to the number of elements of both lists. //! Constant-time if linear<> and/or cache_last<> options are used. //! //! Note: Does not affect the validity of iterators and references. void swap(slist_impl& other) { if(cache_last){ this->priv_swap_cache_last(other); } else{ this->priv_swap_lists(this->get_root_node(), other.get_root_node(), detail::bool_()); } if(constant_time_size){ size_type backup = this->priv_size_traits().get_size(); this->priv_size_traits().set_size(other.priv_size_traits().get_size()); other.priv_size_traits().set_size(backup); } } //! Effects: Moves backwards all the elements, so that the first //! element becomes the second, the second becomes the third... //! the last element becomes the first one. //! //! Throws: Nothing. //! //! Complexity: Linear to the number of elements plus the number shifts. //! //! Note: Iterators Does not affect the validity of iterators and references. void shift_backwards(size_type n = 1) { this->priv_shift_backwards(n, detail::bool_()); } //! Effects: Moves forward all the elements, so that the second //! element becomes the first, the third becomes the second... //! the first element becomes the last one. //! //! Throws: Nothing. //! //! Complexity: Linear to the number of elements plus the number shifts. //! //! Note: Does not affect the validity of iterators and references. void shift_forward(size_type n = 1) { this->priv_shift_forward(n, detail::bool_()); } //! Requires: Disposer::operator()(pointer) shouldn't throw. //! //! Effects: Erases all the elements from *this //! calling Disposer::operator()(pointer), clones all the //! elements from src calling Cloner::operator()(const_reference ) //! and inserts them on *this. //! //! If cloner throws, all cloned elements are unlinked and disposed //! calling Disposer::operator()(pointer). //! //! Complexity: Linear to erased plus inserted elements. //! //! Throws: If cloner throws. template void clone_from(const slist_impl &src, Cloner cloner, Disposer disposer) { this->clear_and_dispose(disposer); BOOST_INTRUSIVE_TRY{ iterator prev(this->before_begin()); const_iterator b(src.begin()), e(src.end()); for(; b != e; ++b){ prev = this->insert_after(prev, *cloner(*b)); } } BOOST_INTRUSIVE_CATCH(...){ this->clear_and_dispose(disposer); BOOST_INTRUSIVE_RETHROW; } BOOST_INTRUSIVE_CATCH_END } //! Requires: value must be an lvalue and prev_p must point to an element //! contained by the list or to end(). //! //! Effects: Inserts the value after the position pointed by prev_p. //! No copy constructor is called. //! //! Returns: An iterator to the inserted element. //! //! Throws: Nothing. //! //! Complexity: Constant. //! //! Note: Does not affect the validity of iterators and references. iterator insert_after(iterator prev_p, reference value) { node_ptr n = get_real_value_traits().to_node_ptr(value); if(safemode_or_autounlink) BOOST_INTRUSIVE_SAFE_HOOK_DEFAULT_ASSERT(node_algorithms::inited(n)); node_ptr prev_n(prev_p.pointed_node()); node_algorithms::link_after(prev_n, n); if(cache_last && (this->get_last_node() == prev_n)){ this->set_last_node(n); } this->priv_size_traits().increment(); return iterator (n, this); } //! Requires: Dereferencing iterator must yield //! an lvalue of type value_type and prev_p must point to an element //! contained by the list or to the end node. //! //! Effects: Inserts the [first, last) //! after the position prev_p. //! //! Throws: Nothing. //! //! Complexity: Linear to the number of elements inserted. //! //! Note: Does not affect the validity of iterators and references. template void insert_after(iterator prev_p, Iterator first, Iterator last) { for (; first != last; ++first) prev_p = this->insert_after(prev_p, *first); } //! Requires: value must be an lvalue and p must point to an element //! contained by the list or to end(). //! //! Effects: Inserts the value before the position pointed by p. //! No copy constructor is called. //! //! Throws: Nothing. //! //! Complexity: Linear to the number of elements before p. //! Constant-time if cache_last<> is true and p == end(). //! //! Note: Does not affect the validity of iterators and references. iterator insert(iterator p, reference value) { return this->insert_after(this->previous(p), value); } //! Requires: Dereferencing iterator must yield //! an lvalue of type value_type and p must point to an element //! contained by the list or to the end node. //! //! Effects: Inserts the pointed by b and e //! before the position p. No copy constructors are called. //! //! Throws: Nothing. //! //! Complexity: Linear to the number of elements inserted plus linear //! to the elements before b. //! Linear to the number of elements to insert if cache_last<> option is true and p == end(). //! //! Note: Does not affect the validity of iterators and references. template void insert(iterator p, Iterator b, Iterator e) { return this->insert_after(this->previous(p), b, e); } //! Effects: Erases the element after the element pointed by prev of //! the list. No destructors are called. //! //! Returns: the first element remaining beyond the removed elements, //! or end() if no such element exists. //! //! Throws: Nothing. //! //! Complexity: Constant. //! //! Note: Invalidates the iterators (but not the references) to the //! erased element. iterator erase_after(iterator prev) { return this->erase_after_and_dispose(prev, detail::null_disposer()); } //! Effects: Erases the range (before_first, last) from //! the list. No destructors are called. //! //! Returns: the first element remaining beyond the removed elements, //! or end() if no such element exists. //! //! Throws: Nothing. //! //! Complexity: Lineal to the elements (last - before_first + 1). //! //! Note: Invalidates the iterators (but not the references) to the //! erased element. iterator erase_after(iterator before_first, iterator last) { return this->erase_after_and_dispose(before_first, last, detail::null_disposer()); } //! Effects: Erases the element pointed by i of the list. //! No destructors are called. //! //! Returns: the first element remaining beyond the removed element, //! or end() if no such element exists. //! //! Throws: Nothing. //! //! Complexity: Linear to the elements before i. //! //! Note: Invalidates the iterators (but not the references) to the //! erased element. iterator erase(iterator i) { return this->erase_after(this->previous(i)); } //! Requires: first and last must be valid iterator to elements in *this. //! //! Effects: Erases the range pointed by b and e. //! No destructors are called. //! //! Returns: the first element remaining beyond the removed elements, //! or end() if no such element exists. //! //! Throws: Nothing. //! //! Complexity: Linear to the number of elements erased plus linear //! to the elements before first. //! //! Note: Invalidates the iterators (but not the references) to the //! erased elements. iterator erase(iterator first, iterator last) { return this->erase_after(this->previous(first), last); } //! Requires: Disposer::operator()(pointer) shouldn't throw. //! //! Effects: Erases the element after the element pointed by prev of //! the list. //! Disposer::operator()(pointer) is called for the removed element. //! //! Returns: the first element remaining beyond the removed elements, //! or end() if no such element exists. //! //! Throws: Nothing. //! //! Complexity: Constant. //! //! Note: Invalidates the iterators to the erased element. template iterator erase_after_and_dispose(iterator prev, Disposer disposer) { iterator it(prev); ++it; node_ptr to_erase(it.pointed_node()); ++it; node_ptr prev_n(prev.pointed_node()); node_algorithms::unlink_after(prev_n); if(cache_last && (to_erase == this->get_last_node())){ this->set_last_node(prev_n); } this->priv_size_traits().decrement(); if(safemode_or_autounlink) node_algorithms::init(to_erase); disposer(get_real_value_traits().to_value_ptr(to_erase)); return it; } //! Requires: Disposer::operator()(pointer) shouldn't throw. //! //! Effects: Erases the range (before_first, last) from //! the list. //! Disposer::operator()(pointer) is called for the removed elements. //! //! Returns: the first element remaining beyond the removed elements, //! or end() if no such element exists. //! //! Throws: Nothing. //! //! Complexity: Lineal to the elements (last - before_first). //! //! Note: Invalidates the iterators to the erased element. template iterator erase_after_and_dispose(iterator before_first, iterator last, Disposer disposer) { node_ptr bfp(before_first.pointed_node()), lp(last.pointed_node()); node_ptr fp(node_traits::get_next(bfp)); node_algorithms::unlink_after(bfp, lp); while(fp != lp){ node_ptr to_erase(fp); fp = node_traits::get_next(fp); if(safemode_or_autounlink) node_algorithms::init(to_erase); disposer(get_real_value_traits().to_value_ptr(to_erase)); this->priv_size_traits().decrement(); } if(cache_last && (node_traits::get_next(bfp) == this->get_end_node())){ this->set_last_node(bfp); } return last; } //! Requires: Disposer::operator()(pointer) shouldn't throw. //! //! Effects: Erases the element pointed by i of the list. //! No destructors are called. //! Disposer::operator()(pointer) is called for the removed element. //! //! Returns: the first element remaining beyond the removed element, //! or end() if no such element exists. //! //! Throws: Nothing. //! //! Complexity: Linear to the elements before i. //! //! Note: Invalidates the iterators (but not the references) to the //! erased element. template iterator erase_and_dispose(iterator i, Disposer disposer) { return this->erase_after_and_dispose(this->previous(i), disposer); } //! Requires: first and last must be valid iterator to elements in *this. //! Disposer::operator()(pointer) shouldn't throw. //! //! Effects: Erases the range pointed by b and e. //! No destructors are called. //! Disposer::operator()(pointer) is called for the removed elements. //! //! Returns: the first element remaining beyond the removed elements, //! or end() if no such element exists. //! //! Throws: Nothing. //! //! Complexity: Linear to the number of elements erased plus linear //! to the elements before first. //! //! Note: Invalidates the iterators (but not the references) to the //! erased elements. template iterator erase_and_dispose(iterator first, iterator last, Disposer disposer) { return this->erase_after_and_dispose(this->previous(first), last, disposer); } //! Requires: Dereferencing iterator must yield //! an lvalue of type value_type. //! //! Effects: Clears the list and inserts the range pointed by b and e. //! No destructors or copy constructors are called. //! //! Throws: Nothing. //! //! Complexity: Linear to the number of elements inserted plus //! linear to the elements contained in the list if it's a safe-mode //! or auto-unlink value. //! Linear to the number of elements inserted in the list otherwise. //! //! Note: Invalidates the iterators (but not the references) //! to the erased elements. template void assign(Iterator b, Iterator e) { this->clear(); this->insert_after(this->before_begin(), b, e); } //! Requires: Disposer::operator()(pointer) shouldn't throw. //! //! Requires: Dereferencing iterator must yield //! an lvalue of type value_type. //! //! Effects: Clears the list and inserts the range pointed by b and e. //! No destructors or copy constructors are called. //! Disposer::operator()(pointer) is called for the removed elements. //! //! Throws: Nothing. //! //! Complexity: Linear to the number of elements inserted plus //! linear to the elements contained in the list. //! //! Note: Invalidates the iterators (but not the references) //! to the erased elements. template void dispose_and_assign(Disposer disposer, Iterator b, Iterator e) { this->clear_and_dispose(disposer); this->insert_after(this->before_begin(), b, e, disposer); } //! Requires: prev is an iterator to an element or x.end()/x.before_begin() in x. //! //! Effects: Transfers all the elements of list x to this list, after the //! the element pointed by prev. No destructors or copy constructors are called. //! //! Returns: The last element inserted of x or prev if x is empty. //! This iterator can be used as new "prev" iterator for a new splice_after call. //! that will splice new values after the previously spliced values. //! //! Throws: Nothing. //! //! Complexity: Linear to the elements contained in x. //! Constant-time if cache_last<> option is true. //! //! Note: Iterators of values obtained from list x now point to elements of this //! list. Iterators of this list and all the references are not invalidated. iterator splice_after(iterator prev, slist_impl &x) { if (!x.empty()){ iterator last_x(x.previous(x.end())); //<- constant time if cache_last is active node_ptr prev_n(prev.pointed_node()); node_ptr last_x_n(last_x.pointed_node()); if(cache_last && node_traits::get_next(prev_n) == this->get_end_node()){ this->set_last_node(last_x_n); } node_algorithms::transfer_after( prev_n, x.before_begin().pointed_node(), last_x_n); this->priv_size_traits().set_size(this->priv_size_traits().get_size() + x.priv_size_traits().get_size()); x.priv_size_traits().set_size(size_type(0)); return last_x; } else{ return prev; } } //! Requires: prev must point to an element contained by this list or //! to the before_begin() element. prev_ele must point to an element contained in list //! x or must be x.before_begin(). //! //! Effects: Transfers the element after prev_ele, from list x to this list, //! after the element pointed by prev. No destructors or copy constructors are called. //! //! Throws: Nothing. //! //! Complexity: Constant. //! //! Note: Iterators of values obtained from list x now point to elements of this //! list. Iterators of this list and all the references are not invalidated. void splice_after(iterator prev_pos, slist_impl &x, iterator prev_ele) { iterator elem = prev_ele; ++elem; if (elem != prev_pos && prev_ele != prev_pos){ this->splice_after(prev_pos, x, prev_ele, elem, 1); } } //! Requires: prev_pos must be a dereferenceable iterator in *this or be //! before_begin(), and before_first and before_last belong to x and //! ++before_first != x.end() && before_last != x.end(). //! //! Effects: Transfers the range (before_first, before_last] from list x to this //! list, after the element pointed by prev_pos. //! No destructors or copy constructors are called. //! //! Throws: Nothing. //! //! Complexity: Linear to the number of elements transferred //! if constant_time_size is true. Constant-time otherwise. //! //! Note: Iterators of values obtained from list x now point to elements of this //! list. Iterators of this list and all the references are not invalidated. void splice_after(iterator prev_pos, slist_impl &x, iterator before_first, iterator before_last) { if(constant_time_size) this->splice_after(prev_pos, x, before_first, before_last, std::distance(before_first, before_last)); else this->priv_splice_after (prev_pos.pointed_node(), x, before_first.pointed_node(), before_last.pointed_node()); } //! Requires: prev_pos must be a dereferenceable iterator in *this or be //! before_begin(), and before_first and before_last belong to x and //! ++before_first != x.end() && before_last != x.end() and //! n == std::distance(before_first, before_last). //! //! Effects: Transfers the range (before_first, before_last] from list x to this //! list, after the element pointed by p. No destructors or copy constructors are called. //! //! Throws: Nothing. //! //! Complexity: Constant time. //! //! Note: Iterators of values obtained from list x now point to elements of this //! list. Iterators of this list and all the references are not invalidated. void splice_after(iterator prev_pos, slist_impl &x, iterator before_first, iterator before_last, difference_type n) { if(n){ BOOST_INTRUSIVE_INVARIANT_ASSERT(std::distance(before_first, before_last) == n); this->priv_splice_after (prev_pos.pointed_node(), x, before_first.pointed_node(), before_last.pointed_node()); if(constant_time_size){ this->priv_size_traits().set_size(this->priv_size_traits().get_size() + n); x.priv_size_traits().set_size(x.priv_size_traits().get_size() - n); } } } //! Requires: it is an iterator to an element in x. //! //! Effects: Transfers all the elements of list x to this list, before the //! the element pointed by it. No destructors or copy constructors are called. //! //! Returns: The last element inserted of x or the previous element //! of it if x is empty. //! This iterator can be used as new "prev" iterator for a new splice call. //! that will splice new values after the previously spliced values. //! //! Throws: Nothing. //! //! Complexity: Linear to the elements contained in x plus linear to //! the elements before it. //! Linear to the elements before it if cache_last<> option is true. //! Constant-time if cache_last<> option is true and it == end(). //! //! Note: Iterators of values obtained from list x now point to elements of this //! list. Iterators of this list and all the references are not invalidated. iterator splice(iterator it, slist_impl &x) { return this->splice_after(this->previous(it), x); } //! Requires: it p must be a valid iterator of *this. //! elem must point to an element contained in list //! x. //! //! Effects: Transfers the element elem, from list x to this list, //! before the element pointed by pos. No destructors or copy constructors are called. //! //! Throws: Nothing. //! //! Complexity: Linear to the elements before pos and before elem. //! Linear to the elements before elem if cache_last<> option is true and pos == end(). //! //! Note: Iterators of values obtained from list x now point to elements of this //! list. Iterators of this list and all the references are not invalidated. void splice(iterator pos, slist_impl &x, iterator elem) { return this->splice_after(this->previous(pos), x, x.previous(elem)); } //! Requires: pos must be a dereferenceable iterator in *this //! and first and last belong to x and first and last a valid range on x. //! //! Effects: Transfers the range [first, last) from list x to this //! list, before the element pointed by pos. //! No destructors or copy constructors are called. //! //! Throws: Nothing. //! //! Complexity: Linear to the sum of elements before pos, first, and last //! plus linear to the number of elements transferred if constant_time_size is true. //! Linear to the sum of elements before first, and last //! plus linear to the number of elements transferred if constant_time_size is true //! if cache_last<> is true and pos == end() //! //! Note: Iterators of values obtained from list x now point to elements of this //! list. Iterators of this list and all the references are not invalidated. void splice(iterator pos, slist_impl &x, iterator first, iterator last) { return this->splice_after(this->previous(pos), x, x.previous(first), x.previous(last)); } //! Requires: pos must be a dereferenceable iterator in *this //! and first and last belong to x and first and last a valid range on x. //! n == std::distance(first, last). //! //! Effects: Transfers the range [first, last) from list x to this //! list, before the element pointed by pos. //! No destructors or copy constructors are called. //! //! Throws: Nothing. //! //! Complexity: Linear to the sum of elements before pos, first, and last. //! Linear to the sum of elements before first and last //! if cache_last<> is true and pos == end(). //! //! Note: Iterators of values obtained from list x now point to elements of this //! list. Iterators of this list and all the references are not invalidated. void splice(iterator pos, slist_impl &x, iterator first, iterator last, difference_type n) { return this->splice_after(this->previous(pos), x, x.previous(first), x.previous(last), n); } //! Effects: This function sorts the list *this according to std::less. //! The sort is stable, that is, the relative order of equivalent elements is preserved. //! //! Throws: If value_traits::node_traits::node //! constructor throws (this does not happen with predefined Boost.Intrusive hooks) //! or the predicate throws. Basic guarantee. //! //! Complexity: The number of comparisons is approximately N log N, where N //! is the list's size. //! //! Note: Iterators and references are not invalidated template void sort(Predicate p) { if (node_traits::get_next(node_traits::get_next(this->get_root_node())) != this->get_root_node()) { slist_impl carry; slist_impl counter[64]; int fill = 0; iterator last_inserted; while(!this->empty()){ last_inserted = this->begin(); carry.splice_after(carry.before_begin(), *this, this->before_begin()); int i = 0; while(i < fill && !counter[i].empty()) { last_inserted = carry.merge(counter[i++], p); } BOOST_INTRUSIVE_INVARIANT_ASSERT(counter[i].empty()); node_ptr p = node_algorithms::get_previous_node (last_inserted.pointed_node(), carry.end().pointed_node()); iterator last_element(p, this); if(constant_time_size){ counter[i].splice_after( counter[i].before_begin(), carry , carry.before_begin(), last_element , carry.size()); } else{ counter[i].splice_after( counter[i].before_begin(), carry , carry.before_begin(), last_element); } if(i == fill) ++fill; } for (int i = 1; i < fill; ++i) last_inserted = counter[i].merge(counter[i-1], p); BOOST_INTRUSIVE_INVARIANT_ASSERT(this->empty()); node_ptr p = node_algorithms::get_previous_node (last_inserted.pointed_node(), counter[--fill].end().pointed_node()); iterator last_element(p, this); if(constant_time_size){ this->splice_after( before_begin(), counter[fill], counter[fill].before_begin() , last_element, counter[fill].size()); } else{ this->splice_after( before_begin(), counter[fill], counter[fill].before_begin() , last_element); } } } //! Requires: p must be a comparison function that induces a strict weak //! ordering and both *this and x must be sorted according to that ordering //! The lists x and *this must be distinct. //! //! Effects: This function removes all of x's elements and inserts them //! in order into *this. The merge is stable; that is, if an element from *this is //! equivalent to one from x, then the element from *this will precede the one from x. //! //! Throws: If value_traits::node_traits::node //! constructor throws (this does not happen with predefined Boost.Intrusive hooks) //! or std::less throws. Basic guarantee. //! //! Complexity: This function is linear time: it performs at most //! size() + x.size() - 1 comparisons. //! //! Note: Iterators and references are not invalidated. void sort() { this->sort(std::less()); } //! Requires: p must be a comparison function that induces a strict weak //! ordering and both *this and x must be sorted according to that ordering //! The lists x and *this must be distinct. //! //! Effects: This function removes all of x's elements and inserts them //! in order into *this. The merge is stable; that is, if an element from *this is //! equivalent to one from x, then the element from *this will precede the one from x. //! //! Returns: An iterator to the last transferred value, end() is x is empty. //! //! Throws: If the predicate throws. Basic guarantee. //! //! Complexity: This function is linear time: it performs at most //! size() + x.size() - 1 comparisons. //! //! Note: Iterators and references are not invalidated. template iterator merge(slist_impl& x, Predicate p) { iterator a(before_begin()), e(end()), ax(x.before_begin()), ex(x.end()); iterator last_inserted(e); iterator a_next; while(++(a_next = a) != e && !x.empty()) { iterator ix(ax); iterator cx; size_type n(0); while(++(cx = ix) != ex && p(*cx, *a_next)){ ++ix; ++n; } if(ax != ix){ this->splice_after(a, x, ax, ix, n); last_inserted = ix; } a = a_next; } if (!x.empty()){ last_inserted = this->splice_after(a, x); } return last_inserted; } //! Effects: This function removes all of x's elements and inserts them //! in order into *this according to std::less. The merge is stable; //! that is, if an element from *this is equivalent to one from x, then the element //! from *this will precede the one from x. //! //! Throws: if std::less throws. Basic guarantee. //! //! Complexity: This function is linear time: it performs at most //! size() + x.size() - 1 comparisons. //! //! Note: Iterators and references are not invalidated void merge(slist_impl& x) { this->merge(x, std::less()); } //! Effects: Reverses the order of elements in the list. //! //! Throws: Nothing. //! //! Complexity: This function is linear to the contained elements. //! //! Note: Iterators and references are not invalidated void reverse() { if(cache_last && !this->empty()){ this->set_last_node(node_traits::get_next(this->get_root_node())); } this->priv_reverse(detail::bool_()); } //! Effects: Removes all the elements that compare equal to value. //! No destructors are called. //! //! Throws: If std::equal_to throws. Basic guarantee. //! //! Complexity: Linear time. It performs exactly size() comparisons for equality. //! //! Note: The relative order of elements that are not removed is unchanged, //! and iterators to elements that are not removed remain valid. This function is //! linear time: it performs exactly size() comparisons for equality. void remove(const_reference value) { this->remove_if(detail::equal_to_value(value)); } //! Requires: Disposer::operator()(pointer) shouldn't throw. //! //! Effects: Removes all the elements that compare equal to value. //! Disposer::operator()(pointer) is called for every removed element. //! //! Throws: If std::equal_to throws. Basic guarantee. //! //! Complexity: Linear time. It performs exactly size() comparisons for equality. //! //! Note: The relative order of elements that are not removed is unchanged, //! and iterators to elements that are not removed remain valid. template void remove_and_dispose(const_reference value, Disposer disposer) { this->remove_and_dispose_if(detail::equal_to_value(value), disposer); } //! Effects: Removes all the elements for which a specified //! predicate is satisfied. No destructors are called. //! //! Throws: If pred throws. Basic guarantee. //! //! Complexity: Linear time. It performs exactly size() calls to the predicate. //! //! Note: The relative order of elements that are not removed is unchanged, //! and iterators to elements that are not removed remain valid. template void remove_if(Pred pred) { this->remove_and_dispose_if(pred, detail::null_disposer()); } //! Requires: Disposer::operator()(pointer) shouldn't throw. //! //! Effects: Removes all the elements for which a specified //! predicate is satisfied. //! Disposer::operator()(pointer) is called for every removed element. //! //! Throws: If pred throws. Basic guarantee. //! //! Complexity: Linear time. It performs exactly size() comparisons for equality. //! //! Note: The relative order of elements that are not removed is unchanged, //! and iterators to elements that are not removed remain valid. template void remove_and_dispose_if(Pred pred, Disposer disposer) { iterator bcur(this->before_begin()), cur(this->begin()), e(this->end()); while(cur != e){ if (pred(*cur)){ cur = this->erase_after_and_dispose(bcur, disposer); } else{ bcur = cur; ++cur; } } if(cache_last){ this->set_last_node(bcur.pointed_node()); } } //! Effects: Removes adjacent duplicate elements or adjacent //! elements that are equal from the list. No destructors are called. //! //! Throws: If std::equal_to throws. Basic guarantee. //! //! Complexity: Linear time (size()-1) comparisons calls to pred()). //! //! Note: The relative order of elements that are not removed is unchanged, //! and iterators to elements that are not removed remain valid. void unique() { this->unique_and_dispose(std::equal_to(), detail::null_disposer()); } //! Effects: Removes adjacent duplicate elements or adjacent //! elements that satisfy some binary predicate from the list. //! No destructors are called. //! //! Throws: If the predicate throws. Basic guarantee. //! //! Complexity: Linear time (size()-1) comparisons equality comparisons. //! //! Note: The relative order of elements that are not removed is unchanged, //! and iterators to elements that are not removed remain valid. template void unique(BinaryPredicate pred) { this->unique_and_dispose(pred, detail::null_disposer()); } //! Requires: Disposer::operator()(pointer) shouldn't throw. //! //! Effects: Removes adjacent duplicate elements or adjacent //! elements that satisfy some binary predicate from the list. //! Disposer::operator()(pointer) is called for every removed element. //! //! Throws: If std::equal_to throws. Basic guarantee. //! //! Complexity: Linear time (size()-1) comparisons equality comparisons. //! //! Note: The relative order of elements that are not removed is unchanged, //! and iterators to elements that are not removed remain valid. template void unique_and_dispose(Disposer disposer) { this->unique(std::equal_to(), disposer); } //! Requires: Disposer::operator()(pointer) shouldn't throw. //! //! Effects: Removes adjacent duplicate elements or adjacent //! elements that satisfy some binary predicate from the list. //! Disposer::operator()(pointer) is called for every removed element. //! //! Throws: If the predicate throws. Basic guarantee. //! //! Complexity: Linear time (size()-1) comparisons equality comparisons. //! //! Note: The relative order of elements that are not removed is unchanged, //! and iterators to elements that are not removed remain valid. template void unique_and_dispose(BinaryPredicate pred, Disposer disposer) { iterator end_n(this->end()); iterator bcur(this->begin()); if(bcur != end_n){ iterator cur(bcur); ++cur; while(cur != end_n) { if (pred(*bcur, *cur)){ cur = this->erase_after_and_dispose(bcur, disposer); } else{ bcur = cur; ++cur; } } if(cache_last){ this->set_last_node(bcur.pointed_node()); } } } //! Requires: value must be a reference to a value inserted in a list. //! //! Effects: This function returns a const_iterator pointing to the element //! //! Throws: Nothing. //! //! Complexity: Constant time. //! //! Note: Iterators and references are not invalidated. //! This static function is available only if the value traits //! is stateless. static iterator s_iterator_to(reference value) { BOOST_STATIC_ASSERT((!stateful_value_traits)); //BOOST_INTRUSIVE_INVARIANT_ASSERT (!node_algorithms::inited(value_traits::to_node_ptr(value))); return iterator (value_traits::to_node_ptr(value), 0); } //! Requires: value must be a const reference to a value inserted in a list. //! //! Effects: This function returns an iterator pointing to the element. //! //! Throws: Nothing. //! //! Complexity: Constant time. //! //! Note: Iterators and references are not invalidated. //! This static function is available only if the value traits //! is stateless. static const_iterator s_iterator_to(const_reference value) { BOOST_STATIC_ASSERT((!stateful_value_traits)); //BOOST_INTRUSIVE_INVARIANT_ASSERT (!node_algorithms::inited(value_traits::to_node_ptr(const_cast (value)))); return const_iterator (value_traits::to_node_ptr(const_cast (value)), 0); } //! Requires: value must be a reference to a value inserted in a list. //! //! Effects: This function returns a const_iterator pointing to the element //! //! Throws: Nothing. //! //! Complexity: Constant time. //! //! Note: Iterators and references are not invalidated. iterator iterator_to(reference value) { //BOOST_INTRUSIVE_INVARIANT_ASSERT (!node_algorithms::inited(value_traits::to_node_ptr(value))); return iterator (value_traits::to_node_ptr(value), this); } //! Requires: value must be a const reference to a value inserted in a list. //! //! Effects: This function returns an iterator pointing to the element. //! //! Throws: Nothing. //! //! Complexity: Constant time. //! //! Note: Iterators and references are not invalidated. const_iterator iterator_to(const_reference value) const { //BOOST_INTRUSIVE_INVARIANT_ASSERT (!node_algorithms::inited(value_traits::to_node_ptr(const_cast (value)))); return const_iterator (value_traits::to_node_ptr(const_cast (value)), this); } //! Returns: The iterator to the element before i in the list. //! Returns the end-iterator, if either i is the begin-iterator or the //! list is empty. //! //! Throws: Nothing. //! //! Complexity: Linear to the number of elements before i. //! Constant if cache_last<> is true and i == end(). iterator previous(iterator i) { if(cache_last && (i.pointed_node() == this->get_end_node())){ return iterator(this->get_last_node(), this); } return iterator (node_algorithms::get_previous_node (this->before_begin().pointed_node(), i.pointed_node()), this); } //! Returns: The const_iterator to the element before i in the list. //! Returns the end-const_iterator, if either i is the begin-const_iterator or //! the list is empty. //! //! Throws: Nothing. //! //! Complexity: Linear to the number of elements before i. //! Constant if cache_last<> is true and i == end(). const_iterator previous(const_iterator i) const { if(cache_last && (i.pointed_node() == this->get_end_node())){ return iterator(uncast(this->get_last_node()), this); } return const_iterator (node_algorithms::get_previous_node (this->before_begin().pointed_node(), i.pointed_node()), this); } private: void priv_splice_after(node_ptr prev_pos_n, slist_impl &x, node_ptr before_first_n, node_ptr before_last_n) { if(cache_last){ if(node_traits::get_next(prev_pos_n) == this->get_end_node()){ this->set_last_node(before_last_n); } if(node_traits::get_next(before_last_n) == x.get_end_node()){ x.set_last_node(before_first_n); } } node_algorithms::transfer_after(prev_pos_n, before_first_n, before_last_n); } void priv_reverse(detail::bool_) { node_algorithms::reverse(this->get_root_node()); } void priv_reverse(detail::bool_) { node_ptr new_first = node_algorithms::reverse (node_traits::get_next(this->get_root_node())); node_traits::set_next(this->get_root_node(), new_first); } void priv_shift_backwards(size_type n, detail::bool_) { node_ptr last = node_algorithms::move_forward(this->get_root_node(), (std::size_t)n); if(cache_last && last){ this->set_last_node(last); } } void priv_shift_backwards(size_type n, detail::bool_) { std::pair ret( node_algorithms::move_first_n_forward (node_traits::get_next(this->get_root_node()), (std::size_t)n)); if(ret.first){ node_traits::set_next(this->get_root_node(), ret.first); if(cache_last){ this->set_last_node(ret.second); } } } void priv_shift_forward(size_type n, detail::bool_) { node_ptr last = node_algorithms::move_backwards(this->get_root_node(), (std::size_t)n); if(cache_last && last){ this->set_last_node(last); } } void priv_shift_forward(size_type n, detail::bool_) { std::pair ret( node_algorithms::move_first_n_backwards (node_traits::get_next(this->get_root_node()), (std::size_t)n)); if(ret.first){ node_traits::set_next(this->get_root_node(), ret.first); if(cache_last){ this->set_last_node(ret.second); } } } void priv_swap_cache_last(slist_impl &other) { node_ptr other_last(other.get_last_node()); node_ptr this_last(this->get_last_node()); node_ptr other_bfirst(other.get_root_node()); node_ptr this_bfirst(this->get_root_node()); node_algorithms::transfer_after(this_bfirst, other_bfirst, other_last); node_algorithms::transfer_after(other_bfirst, other_last != other_bfirst? other_last : this_bfirst, this_last); node_ptr tmp(this->get_last_node()); this->set_last_node(other.get_last_node()); other.set_last_node(tmp); if(this->get_last_node() == other_bfirst){ this->set_last_node(this_bfirst); } if(other.get_last_node() == this_bfirst){ other.set_last_node(other_bfirst); } } //circular version static void priv_swap_lists(node_ptr this_node, node_ptr other_node, detail::bool_) { node_algorithms::swap_nodes(this_node, other_node); } //linear version static void priv_swap_lists(node_ptr this_node, node_ptr other_node, detail::bool_) { node_algorithms::swap_trailing_nodes(this_node, other_node); } static slist_impl &priv_container_from_end_iterator(const const_iterator &end_iterator) { //Obtaining the container from the end iterator is not possible with linear //singly linked lists (because "end" is represented by the null pointer) BOOST_STATIC_ASSERT(!linear); root_plus_size *r = detail::parent_from_member ( detail::get_pointer(end_iterator.pointed_node()), (&root_plus_size::root_)); data_t *d = detail::parent_from_member ( r, &data_t::root_plus_size_); slist_impl *s = detail::parent_from_member(d, &slist_impl::data_); return *s; } }; #ifdef BOOST_INTRUSIVE_DOXYGEN_INVOKED template #else template #endif inline bool operator< #ifdef BOOST_INTRUSIVE_DOXYGEN_INVOKED (const slist_impl &x, const slist_impl &y) #else (const slist_impl &x, const slist_impl &y) #endif { return std::lexicographical_compare(x.begin(), x.end(), y.begin(), y.end()); } #ifdef BOOST_INTRUSIVE_DOXYGEN_INVOKED template #else template #endif bool operator== #ifdef BOOST_INTRUSIVE_DOXYGEN_INVOKED (const slist_impl &x, const slist_impl &y) #else (const slist_impl &x, const slist_impl &y) #endif { typedef slist_impl slist_type; typedef typename slist_type::const_iterator const_iterator; const bool C = slist_type::constant_time_size; if(C && x.size() != y.size()){ return false; } const_iterator end1 = x.end(); const_iterator i1 = x.begin(); const_iterator i2 = y.begin(); if(C){ while (i1 != end1 && *i1 == *i2) { ++i1; ++i2; } return i1 == end1; } else{ const_iterator end2 = y.end(); while (i1 != end1 && i2 != end2 && *i1 == *i2) { ++i1; ++i2; } return i1 == end1 && i2 == end2; } } #ifdef BOOST_INTRUSIVE_DOXYGEN_INVOKED template #else template #endif inline bool operator!= #ifdef BOOST_INTRUSIVE_DOXYGEN_INVOKED (const slist_impl &x, const slist_impl &y) #else (const slist_impl &x, const slist_impl &y) #endif { return !(x == y); } #ifdef BOOST_INTRUSIVE_DOXYGEN_INVOKED template #else template #endif inline bool operator> #ifdef BOOST_INTRUSIVE_DOXYGEN_INVOKED (const slist_impl &x, const slist_impl &y) #else (const slist_impl &x, const slist_impl &y) #endif { return y < x; } #ifdef BOOST_INTRUSIVE_DOXYGEN_INVOKED template #else template #endif inline bool operator<= #ifdef BOOST_INTRUSIVE_DOXYGEN_INVOKED (const slist_impl &x, const slist_impl &y) #else (const slist_impl &x, const slist_impl &y) #endif { return !(y < x); } #ifdef BOOST_INTRUSIVE_DOXYGEN_INVOKED template #else template #endif inline bool operator>= #ifdef BOOST_INTRUSIVE_DOXYGEN_INVOKED (const slist_impl &x, const slist_impl &y) #else (const slist_impl &x, const slist_impl &y) #endif { return !(x < y); } #ifdef BOOST_INTRUSIVE_DOXYGEN_INVOKED template #else template #endif inline void swap #ifdef BOOST_INTRUSIVE_DOXYGEN_INVOKED (slist_impl &x, slist_impl &y) #else (slist_impl &x, slist_impl &y) #endif { x.swap(y); } //! Helper metafunction to define a \c slist that yields to the same type when the //! same options (either explicitly or implicitly) are used. #ifdef BOOST_INTRUSIVE_DOXYGEN_INVOKED template #else template #endif struct make_slist { /// @cond typedef typename pack_options < slist_defaults, O1, O2, O3, O4, O5>::type packed_options; typedef typename detail::get_value_traits ::type value_traits; typedef slist_impl < slistopt < value_traits , typename packed_options::size_type , packed_options::constant_time_size , packed_options::linear , packed_options::cache_last > > implementation_defined; /// @endcond typedef implementation_defined type; }; #ifndef BOOST_INTRUSIVE_DOXYGEN_INVOKED template class slist : public make_slist::type { typedef typename make_slist ::type Base; typedef typename Base::real_value_traits real_value_traits; //Assert if passed value traits are compatible with the type BOOST_STATIC_ASSERT((detail::is_same::value)); public: typedef typename Base::value_traits value_traits; typedef typename Base::iterator iterator; typedef typename Base::const_iterator const_iterator; slist(const value_traits &v_traits = value_traits()) : Base(v_traits) {} template slist(Iterator b, Iterator e, const value_traits &v_traits = value_traits()) : Base(b, e, v_traits) {} static slist &container_from_end_iterator(iterator end_iterator) { return static_cast(Base::container_from_end_iterator(end_iterator)); } static const slist &container_from_end_iterator(const_iterator end_iterator) { return static_cast(Base::container_from_end_iterator(end_iterator)); } }; #endif } //namespace intrusive } //namespace boost #include #endif //BOOST_INTRUSIVE_SLIST_HPP