// Copyright (c) 2006 Xiaogang Zhang // Use, modification and distribution are subject to the // Boost Software License, Version 1.0. (See accompanying file // LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt) #ifndef BOOST_MATH_BESSEL_K0_HPP #define BOOST_MATH_BESSEL_K0_HPP #include #include #include // Modified Bessel function of the second kind of order zero // minimax rational approximations on intervals, see // Russon and Blair, Chalk River Report AECL-3461, 1969 namespace boost { namespace math { namespace detail{ template T bessel_k0(T x, const Policy& pol) { BOOST_MATH_INSTRUMENT_CODE(x); static const T P1[] = { static_cast(2.4708152720399552679e+03L), static_cast(5.9169059852270512312e+03L), static_cast(4.6850901201934832188e+02L), static_cast(1.1999463724910714109e+01L), static_cast(1.3166052564989571850e-01L), static_cast(5.8599221412826100000e-04L) }; static const T Q1[] = { static_cast(2.1312714303849120380e+04L), static_cast(-2.4994418972832303646e+02L), static_cast(1.0L) }; static const T P2[] = { static_cast(-1.6128136304458193998e+06L), static_cast(-3.7333769444840079748e+05L), static_cast(-1.7984434409411765813e+04L), static_cast(-2.9501657892958843865e+02L), static_cast(-1.6414452837299064100e+00L) }; static const T Q2[] = { static_cast(-1.6128136304458193998e+06L), static_cast(2.9865713163054025489e+04L), static_cast(-2.5064972445877992730e+02L), static_cast(1.0L) }; static const T P3[] = { static_cast(1.1600249425076035558e+02L), static_cast(2.3444738764199315021e+03L), static_cast(1.8321525870183537725e+04L), static_cast(7.1557062783764037541e+04L), static_cast(1.5097646353289914539e+05L), static_cast(1.7398867902565686251e+05L), static_cast(1.0577068948034021957e+05L), static_cast(3.1075408980684392399e+04L), static_cast(3.6832589957340267940e+03L), static_cast(1.1394980557384778174e+02L) }; static const T Q3[] = { static_cast(9.2556599177304839811e+01L), static_cast(1.8821890840982713696e+03L), static_cast(1.4847228371802360957e+04L), static_cast(5.8824616785857027752e+04L), static_cast(1.2689839587977598727e+05L), static_cast(1.5144644673520157801e+05L), static_cast(9.7418829762268075784e+04L), static_cast(3.1474655750295278825e+04L), static_cast(4.4329628889746408858e+03L), static_cast(2.0013443064949242491e+02L), static_cast(1.0L) }; T value, factor, r, r1, r2; BOOST_MATH_STD_USING using namespace boost::math::tools; static const char* function = "boost::math::bessel_k0<%1%>(%1%,%1%)"; if (x < 0) { return policies::raise_domain_error(function, "Got x = %1%, but argument x must be non-negative, complex number result not supported", x, pol); } if (x == 0) { return policies::raise_overflow_error(function, 0, pol); } if (x <= 1) // x in (0, 1] { T y = x * x; r1 = evaluate_polynomial(P1, y) / evaluate_polynomial(Q1, y); r2 = evaluate_polynomial(P2, y) / evaluate_polynomial(Q2, y); factor = log(x); value = r1 - factor * r2; } else // x in (1, \infty) { T y = 1 / x; r = evaluate_polynomial(P3, y) / evaluate_polynomial(Q3, y); factor = exp(-x) / sqrt(x); value = factor * r; BOOST_MATH_INSTRUMENT_CODE("y = " << y); BOOST_MATH_INSTRUMENT_CODE("r = " << r); BOOST_MATH_INSTRUMENT_CODE("factor = " << factor); BOOST_MATH_INSTRUMENT_CODE("value = " << value); } return value; } }}} // namespaces #endif // BOOST_MATH_BESSEL_K0_HPP