// Copyright (c) 2006 Xiaogang Zhang // Use, modification and distribution are subject to the // Boost Software License, Version 1.0. (See accompanying file // LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt) #ifndef BOOST_MATH_BESSEL_Y0_HPP #define BOOST_MATH_BESSEL_Y0_HPP #include #include #include #include #include // Bessel function of the second kind of order zero // x <= 8, minimax rational approximations on root-bracketing intervals // x > 8, Hankel asymptotic expansion in Hart, Computer Approximations, 1968 namespace boost { namespace math { namespace detail{ template T bessel_y0(T x, const Policy& pol) { static const T P1[] = { static_cast(1.0723538782003176831e+11L), static_cast(-8.3716255451260504098e+09L), static_cast(2.0422274357376619816e+08L), static_cast(-2.1287548474401797963e+06L), static_cast(1.0102532948020907590e+04L), static_cast(-1.8402381979244993524e+01L), }; static const T Q1[] = { static_cast(5.8873865738997033405e+11L), static_cast(8.1617187777290363573e+09L), static_cast(5.5662956624278251596e+07L), static_cast(2.3889393209447253406e+05L), static_cast(6.6475986689240190091e+02L), static_cast(1.0L), }; static const T P2[] = { static_cast(-2.2213976967566192242e+13L), static_cast(-5.5107435206722644429e+11L), static_cast(4.3600098638603061642e+10L), static_cast(-6.9590439394619619534e+08L), static_cast(4.6905288611678631510e+06L), static_cast(-1.4566865832663635920e+04L), static_cast(1.7427031242901594547e+01L), }; static const T Q2[] = { static_cast(4.3386146580707264428e+14L), static_cast(5.4266824419412347550e+12L), static_cast(3.4015103849971240096e+10L), static_cast(1.3960202770986831075e+08L), static_cast(4.0669982352539552018e+05L), static_cast(8.3030857612070288823e+02L), static_cast(1.0L), }; static const T P3[] = { static_cast(-8.0728726905150210443e+15L), static_cast(6.7016641869173237784e+14L), static_cast(-1.2829912364088687306e+11L), static_cast(-1.9363051266772083678e+11L), static_cast(2.1958827170518100757e+09L), static_cast(-1.0085539923498211426e+07L), static_cast(2.1363534169313901632e+04L), static_cast(-1.7439661319197499338e+01L), }; static const T Q3[] = { static_cast(3.4563724628846457519e+17L), static_cast(3.9272425569640309819e+15L), static_cast(2.2598377924042897629e+13L), static_cast(8.6926121104209825246e+10L), static_cast(2.4727219475672302327e+08L), static_cast(5.3924739209768057030e+05L), static_cast(8.7903362168128450017e+02L), static_cast(1.0L), }; static const T PC[] = { static_cast(2.2779090197304684302e+04L), static_cast(4.1345386639580765797e+04L), static_cast(2.1170523380864944322e+04L), static_cast(3.4806486443249270347e+03L), static_cast(1.5376201909008354296e+02L), static_cast(8.8961548424210455236e-01L), }; static const T QC[] = { static_cast(2.2779090197304684318e+04L), static_cast(4.1370412495510416640e+04L), static_cast(2.1215350561880115730e+04L), static_cast(3.5028735138235608207e+03L), static_cast(1.5711159858080893649e+02L), static_cast(1.0L), }; static const T PS[] = { static_cast(-8.9226600200800094098e+01L), static_cast(-1.8591953644342993800e+02L), static_cast(-1.1183429920482737611e+02L), static_cast(-2.2300261666214198472e+01L), static_cast(-1.2441026745835638459e+00L), static_cast(-8.8033303048680751817e-03L), }; static const T QS[] = { static_cast(5.7105024128512061905e+03L), static_cast(1.1951131543434613647e+04L), static_cast(7.2642780169211018836e+03L), static_cast(1.4887231232283756582e+03L), static_cast(9.0593769594993125859e+01L), static_cast(1.0L), }; static const T x1 = static_cast(8.9357696627916752158e-01L), x2 = static_cast(3.9576784193148578684e+00L), x3 = static_cast(7.0860510603017726976e+00L), x11 = static_cast(2.280e+02L), x12 = static_cast(2.9519662791675215849e-03L), x21 = static_cast(1.0130e+03L), x22 = static_cast(6.4716931485786837568e-04L), x31 = static_cast(1.8140e+03L), x32 = static_cast(1.1356030177269762362e-04L) ; T value, factor, r, rc, rs; BOOST_MATH_STD_USING using namespace boost::math::tools; using namespace boost::math::constants; static const char* function = "boost::math::bessel_y0<%1%>(%1%,%1%)"; if (x < 0) { return policies::raise_domain_error(function, "Got x = %1% but x must be non-negative, complex result not supported.", x, pol); } if (x == 0) { return -policies::raise_overflow_error(function, 0, pol); } if (x <= 3) // x in (0, 3] { T y = x * x; T z = 2 * log(x/x1) * bessel_j0(x) / pi(); r = evaluate_rational(P1, Q1, y); factor = (x + x1) * ((x - x11/256) - x12); value = z + factor * r; } else if (x <= 5.5f) // x in (3, 5.5] { T y = x * x; T z = 2 * log(x/x2) * bessel_j0(x) / pi(); r = evaluate_rational(P2, Q2, y); factor = (x + x2) * ((x - x21/256) - x22); value = z + factor * r; } else if (x <= 8) // x in (5.5, 8] { T y = x * x; T z = 2 * log(x/x3) * bessel_j0(x) / pi(); r = evaluate_rational(P3, Q3, y); factor = (x + x3) * ((x - x31/256) - x32); value = z + factor * r; } else // x in (8, \infty) { T y = 8 / x; T y2 = y * y; T z = x - 0.25f * pi(); rc = evaluate_rational(PC, QC, y2); rs = evaluate_rational(PS, QS, y2); factor = sqrt(2 / (x * pi())); value = factor * (rc * sin(z) + y * rs * cos(z)); } return value; } }}} // namespaces #endif // BOOST_MATH_BESSEL_Y0_HPP