// Copyright (c) 2006 Xiaogang Zhang // Use, modification and distribution are subject to the // Boost Software License, Version 1.0. (See accompanying file // LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt) #ifndef BOOST_MATH_BESSEL_Y1_HPP #define BOOST_MATH_BESSEL_Y1_HPP #include #include #include #include #include // Bessel function of the second kind of order one // x <= 8, minimax rational approximations on root-bracketing intervals // x > 8, Hankel asymptotic expansion in Hart, Computer Approximations, 1968 namespace boost { namespace math { namespace detail{ template T bessel_y1(T x, const Policy& pol) { static const T P1[] = { static_cast(4.0535726612579544093e+13L), static_cast(5.4708611716525426053e+12L), static_cast(-3.7595974497819597599e+11L), static_cast(7.2144548214502560419e+09L), static_cast(-5.9157479997408395984e+07L), static_cast(2.2157953222280260820e+05L), static_cast(-3.1714424660046133456e+02L), }; static const T Q1[] = { static_cast(3.0737873921079286084e+14L), static_cast(4.1272286200406461981e+12L), static_cast(2.7800352738690585613e+10L), static_cast(1.2250435122182963220e+08L), static_cast(3.8136470753052572164e+05L), static_cast(8.2079908168393867438e+02L), static_cast(1.0L), }; static const T P2[] = { static_cast(1.1514276357909013326e+19L), static_cast(-5.6808094574724204577e+18L), static_cast(-2.3638408497043134724e+16L), static_cast(4.0686275289804744814e+15L), static_cast(-5.9530713129741981618e+13L), static_cast(3.7453673962438488783e+11L), static_cast(-1.1957961912070617006e+09L), static_cast(1.9153806858264202986e+06L), static_cast(-1.2337180442012953128e+03L), }; static const T Q2[] = { static_cast(5.3321844313316185697e+20L), static_cast(5.6968198822857178911e+18L), static_cast(3.0837179548112881950e+16L), static_cast(1.1187010065856971027e+14L), static_cast(3.0221766852960403645e+11L), static_cast(6.3550318087088919566e+08L), static_cast(1.0453748201934079734e+06L), static_cast(1.2855164849321609336e+03L), static_cast(1.0L), }; static const T PC[] = { static_cast(-4.4357578167941278571e+06L), static_cast(-9.9422465050776411957e+06L), static_cast(-6.6033732483649391093e+06L), static_cast(-1.5235293511811373833e+06L), static_cast(-1.0982405543459346727e+05L), static_cast(-1.6116166443246101165e+03L), static_cast(0.0L), }; static const T QC[] = { static_cast(-4.4357578167941278568e+06L), static_cast(-9.9341243899345856590e+06L), static_cast(-6.5853394797230870728e+06L), static_cast(-1.5118095066341608816e+06L), static_cast(-1.0726385991103820119e+05L), static_cast(-1.4550094401904961825e+03L), static_cast(1.0L), }; static const T PS[] = { static_cast(3.3220913409857223519e+04L), static_cast(8.5145160675335701966e+04L), static_cast(6.6178836581270835179e+04L), static_cast(1.8494262873223866797e+04L), static_cast(1.7063754290207680021e+03L), static_cast(3.5265133846636032186e+01L), static_cast(0.0L), }; static const T QS[] = { static_cast(7.0871281941028743574e+05L), static_cast(1.8194580422439972989e+06L), static_cast(1.4194606696037208929e+06L), static_cast(4.0029443582266975117e+05L), static_cast(3.7890229745772202641e+04L), static_cast(8.6383677696049909675e+02L), static_cast(1.0L), }; static const T x1 = static_cast(2.1971413260310170351e+00L), x2 = static_cast(5.4296810407941351328e+00L), x11 = static_cast(5.620e+02L), x12 = static_cast(1.8288260310170351490e-03L), x21 = static_cast(1.3900e+03L), x22 = static_cast(-6.4592058648672279948e-06L) ; T value, factor, r, rc, rs; BOOST_MATH_STD_USING using namespace boost::math::tools; using namespace boost::math::constants; if (x <= 0) { return policies::raise_domain_error("bost::math::bessel_y1<%1%>(%1%,%1%)", "Got x == %1%, but x must be > 0, complex result not supported.", x, pol); } if (x <= 4) // x in (0, 4] { T y = x * x; T z = 2 * log(x/x1) * bessel_j1(x) / pi(); r = evaluate_rational(P1, Q1, y); factor = (x + x1) * ((x - x11/256) - x12) / x; value = z + factor * r; } else if (x <= 8) // x in (4, 8] { T y = x * x; T z = 2 * log(x/x2) * bessel_j1(x) / pi(); r = evaluate_rational(P2, Q2, y); factor = (x + x2) * ((x - x21/256) - x22) / x; value = z + factor * r; } else // x in (8, \infty) { T y = 8 / x; T y2 = y * y; T z = x - 0.75f * pi(); rc = evaluate_rational(PC, QC, y2); rs = evaluate_rational(PS, QS, y2); factor = sqrt(2 / (x * pi())); value = factor * (rc * sin(z) + y * rs * cos(z)); } return value; } }}} // namespaces #endif // BOOST_MATH_BESSEL_Y1_HPP