// Copyright (c) 2006 Xiaogang Zhang // Use, modification and distribution are subject to the // Boost Software License, Version 1.0. (See accompanying file // LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt) // // History: // XZ wrote the original of this file as part of the Google // Summer of Code 2006. JM modified it slightly to fit into the // Boost.Math conceptual framework better. #ifndef BOOST_MATH_ELLINT_RD_HPP #define BOOST_MATH_ELLINT_RD_HPP #include #include #include // Carlson's elliptic integral of the second kind // R_D(x, y, z) = R_J(x, y, z, z) = 1.5 * \int_{0}^{\infty} [(t+x)(t+y)]^{-1/2} (t+z)^{-3/2} dt // Carlson, Numerische Mathematik, vol 33, 1 (1979) namespace boost { namespace math { namespace detail{ template T ellint_rd_imp(T x, T y, T z, const Policy& pol) { T value, u, lambda, sigma, factor, tolerance; T X, Y, Z, EA, EB, EC, ED, EE, S1, S2; unsigned long k; BOOST_MATH_STD_USING using namespace boost::math::tools; static const char* function = "boost::math::ellint_rd<%1%>(%1%,%1%,%1%)"; if (x < 0) { return policies::raise_domain_error(function, "Argument x must be >= 0, but got %1%", x, pol); } if (y < 0) { return policies::raise_domain_error(function, "Argument y must be >= 0, but got %1%", y, pol); } if (z <= 0) { return policies::raise_domain_error(function, "Argument z must be > 0, but got %1%", z, pol); } if (x + y == 0) { return policies::raise_domain_error(function, "At most one argument can be zero, but got, x + y = %1%", x+y, pol); } // error scales as the 6th power of tolerance tolerance = pow(tools::epsilon() / 3, T(1)/6); // duplication sigma = 0; factor = 1; k = 1; do { u = (x + y + z + z + z) / 5; X = (u - x) / u; Y = (u - y) / u; Z = (u - z) / u; if ((tools::max)(abs(X), abs(Y), abs(Z)) < tolerance) break; T sx = sqrt(x); T sy = sqrt(y); T sz = sqrt(z); lambda = sy * (sx + sz) + sz * sx; //sqrt(x * y) + sqrt(y * z) + sqrt(z * x); sigma += factor / (sz * (z + lambda)); factor /= 4; x = (x + lambda) / 4; y = (y + lambda) / 4; z = (z + lambda) / 4; ++k; } while(k < policies::get_max_series_iterations()); // Check to see if we gave up too soon: policies::check_series_iterations(function, k, pol); // Taylor series expansion to the 5th order EA = X * Y; EB = Z * Z; EC = EA - EB; ED = EA - 6 * EB; EE = ED + EC + EC; S1 = ED * (ED * T(9) / 88 - Z * EE * T(9) / 52 - T(3) / 14); S2 = Z * (EE / 6 + Z * (-EC * T(9) / 22 + Z * EA * T(3) / 26)); value = 3 * sigma + factor * (1 + S1 + S2) / (u * sqrt(u)); return value; } } // namespace detail template inline typename tools::promote_args::type ellint_rd(T1 x, T2 y, T3 z, const Policy& pol) { typedef typename tools::promote_args::type result_type; typedef typename policies::evaluation::type value_type; return policies::checked_narrowing_cast( detail::ellint_rd_imp( static_cast(x), static_cast(y), static_cast(z), pol), "boost::math::ellint_rd<%1%>(%1%,%1%,%1%)"); } template inline typename tools::promote_args::type ellint_rd(T1 x, T2 y, T3 z) { return ellint_rd(x, y, z, policies::policy<>()); } }} // namespaces #endif // BOOST_MATH_ELLINT_RD_HPP