///////////////////////////////////////////////////////////////////////////// // // (C) Copyright Ion Gaztanaga 2006-2012 // // Distributed under the Boost Software License, Version 1.0. // (See accompanying file LICENSE_1_0.txt or copy at // http://www.boost.org/LICENSE_1_0.txt) // // See http://www.boost.org/libs/intrusive for documentation. // ///////////////////////////////////////////////////////////////////////////// #ifndef BOOST_INTRUSIVE_HASHTABLE_HPP #define BOOST_INTRUSIVE_HASHTABLE_HPP #include //std C++ #include //std::equal_to #include //std::pair #include //std::swap, std::lower_bound, std::upper_bound #include //std::size_t //boost #include #include #include #include //General intrusive utilities #include #include #include #include #include #include #include //Implementation utilities #include #include #include #include #include #include #include namespace boost { namespace intrusive { /// @cond namespace detail { struct hash_bool_flags { static const std::size_t unique_keys_pos = 1u; static const std::size_t constant_time_size_pos = 2u; static const std::size_t power_2_buckets_pos = 4u; static const std::size_t cache_begin_pos = 8u; static const std::size_t compare_hash_pos = 16u; static const std::size_t incremental_pos = 32u; }; template < class ValueTraits , class Hash , class Equal , class SizeType , class BucketTraits , std::size_t BoolFlags > struct usetopt { typedef ValueTraits value_traits; typedef Hash hash; typedef Equal equal; typedef SizeType size_type; typedef BucketTraits bucket_traits; static const std::size_t bool_flags = BoolFlags; }; template < class UsetOpt , std::size_t BoolMask > struct usetopt_mask { typedef usetopt type; }; template struct hash_reduced_slist_node_traits { template static detail::one test(...); template static detail::two test(typename U::reduced_slist_node_traits* = 0); static const bool value = sizeof(test(0)) == sizeof(detail::two); }; template struct apply_reduced_slist_node_traits { typedef typename NodeTraits::reduced_slist_node_traits type; }; template struct reduced_slist_node_traits { typedef typename detail::eval_if_c < hash_reduced_slist_node_traits::value , apply_reduced_slist_node_traits , detail::identity >::type type; }; template struct get_slist_impl { typedef trivial_value_traits trivial_traits; //Reducing symbol length struct type : make_slist < typename NodeTraits::node , boost::intrusive::value_traits , boost::intrusive::constant_time_size , boost::intrusive::size_type::difference_type>::type > >::type {}; }; template struct real_from_supposed_value_traits { typedef typename detail::eval_if_c < detail::external_value_traits_is_true ::value , detail::eval_value_traits , detail::identity >::type type; }; template struct get_slist_impl_from_supposed_value_traits { typedef typename real_from_supposed_value_traits < SupposedValueTraits>::type real_value_traits; typedef typename detail::get_node_traits ::type node_traits; typedef typename get_slist_impl ::type >::type type; }; template struct unordered_bucket_impl { typedef typename get_slist_impl_from_supposed_value_traits ::type slist_impl; typedef detail::bucket_impl implementation_defined; typedef implementation_defined type; }; template struct unordered_bucket_ptr_impl { typedef typename detail::get_node_traits ::type::node_ptr node_ptr; typedef typename unordered_bucket_impl ::type bucket_type; typedef typename pointer_traits ::template rebind_pointer < bucket_type >::type implementation_defined; typedef implementation_defined type; }; template struct store_hash_bool { template struct two_or_three {one _[2 + Add];}; template static one test(...); template static two_or_three test (int); static const std::size_t value = sizeof(test(0)); }; template struct store_hash_is_true { static const bool value = store_hash_bool::value > sizeof(one)*2; }; template struct optimize_multikey_bool { template struct two_or_three {one _[2 + Add];}; template static one test(...); template static two_or_three test (int); static const std::size_t value = sizeof(test(0)); }; template struct optimize_multikey_is_true { static const bool value = optimize_multikey_bool::value > sizeof(one)*2; }; template struct bucket_plus_size : public detail::size_holder //size_traits < 0 != (Config::bool_flags & hash_bool_flags::constant_time_size_pos) , typename Config::size_type> { typedef detail::size_holder < 0 != (Config::bool_flags & hash_bool_flags::constant_time_size_pos) , typename Config::size_type> size_traits; typedef typename Config::bucket_traits bucket_traits; template bucket_plus_size(BOOST_FWD_REF(BucketTraits) b_traits) : bucket_traits_(::boost::forward(b_traits)) {} bucket_plus_size & operator =(const bucket_plus_size &x) { this->size_traits::operator=(x); bucket_traits_ = x.bucket_traits_; return *this; } bucket_traits bucket_traits_; }; template struct bucket_hash_t : public detail::ebo_functor_holder //hash { typedef typename Config::hash hasher; typedef detail::size_holder < 0 != (Config::bool_flags & hash_bool_flags::constant_time_size_pos) , typename Config::size_type> size_traits; typedef typename Config::bucket_traits bucket_traits; template bucket_hash_t(BOOST_FWD_REF(BucketTraits) b_traits, const hasher & h) : detail::ebo_functor_holder(h), bucket_plus_size_(::boost::forward(b_traits)) {} bucket_plus_size bucket_plus_size_; }; template struct bucket_hash_equal_t : public detail::ebo_functor_holder { typedef typename Config::equal equal; typedef typename Config::hash hasher; typedef typename Config::bucket_traits bucket_traits; template bucket_hash_equal_t(BOOST_FWD_REF(BucketTraits) b_traits, const hasher & h, const equal &e) : detail::ebo_functor_holder(e)//equal() , bucket_hash(::boost::forward(b_traits), h) {} template void set_cache(T) {} bucket_hash_t bucket_hash; }; template //cache_begin == true version struct bucket_hash_equal_t : public detail::ebo_functor_holder { typedef typename Config::equal equal; typedef typename Config::hash hasher; typedef typename Config::bucket_traits bucket_traits; typedef typename unordered_bucket_ptr_impl ::type bucket_ptr; template bucket_hash_equal_t(BOOST_FWD_REF(BucketTraits) b_traits, const hasher & h, const equal &e) : detail::ebo_functor_holder(e) //equal() , bucket_hash(::boost::forward(b_traits), h) {} void set_cache(const bucket_ptr & c) { cached_begin_ = c; } bucket_hash_t bucket_hash; bucket_ptr cached_begin_; }; template struct hashtable_data_t : public Config::value_traits { static const std::size_t bool_flags = Config::bool_flags; typedef typename Config::value_traits value_traits; typedef typename Config::equal equal; typedef typename Config::hash hasher; typedef typename Config::bucket_traits bucket_traits; template hashtable_data_t( BOOST_FWD_REF(BucketTraits) b_traits, const hasher & h , const equal &e, const value_traits &val_traits) : Config::value_traits(val_traits) //value_traits , internal_(::boost::forward(b_traits), h, e) {} typedef typename detail::usetopt_mask < Config , detail::hash_bool_flags::constant_time_size_pos | detail::hash_bool_flags::incremental_pos >::type masked_config_t; struct internal : public detail::size_holder //split_traits < 0 != (Config::bool_flags & hash_bool_flags::incremental_pos) , typename Config::size_type> { template internal(BOOST_FWD_REF(BucketTraits) b_traits, const hasher & h, const equal &e) : bucket_hash_equal_(::boost::forward(b_traits), h, e) {} bucket_hash_equal_t < masked_config_t , 0 != (bool_flags & hash_bool_flags::cache_begin_pos) > bucket_hash_equal_; } internal_; }; struct insert_commit_data_impl { std::size_t hash; }; template struct group_functions { typedef NodeTraits node_traits; typedef unordered_group_adapter group_traits; typedef typename node_traits::node_ptr node_ptr; typedef typename node_traits::node node; typedef typename reduced_slist_node_traits ::type reduced_node_traits; typedef typename reduced_node_traits::node_ptr slist_node_ptr; typedef typename reduced_node_traits::node slist_node; typedef circular_slist_algorithms group_algorithms; static node_ptr dcast_bucket_ptr(const slist_node_ptr &p) { return pointer_traits::pointer_to(static_cast(*p)); } static slist_node_ptr get_bucket_before_begin (const slist_node_ptr &bucket_beg, const slist_node_ptr &bucket_end, const node_ptr &p) { //First find the last node of p's group. //This requires checking the first node of the next group or //the bucket node. node_ptr prev_node = p; node_ptr nxt(node_traits::get_next(p)); while(!(bucket_beg <= nxt && nxt <= bucket_end) && (group_traits::get_next(nxt) == prev_node)){ prev_node = nxt; nxt = node_traits::get_next(nxt); } //If we've reached the bucket node just return it. if(bucket_beg <= nxt && nxt <= bucket_end){ return nxt; } //Otherwise, iterate using group links until the bucket node node_ptr first_node_of_group = nxt; node_ptr last_node_group = group_traits::get_next(first_node_of_group); slist_node_ptr possible_end = node_traits::get_next(last_node_group); while(!(bucket_beg <= possible_end && possible_end <= bucket_end)){ first_node_of_group = dcast_bucket_ptr(possible_end); last_node_group = group_traits::get_next(first_node_of_group); possible_end = node_traits::get_next(last_node_group); } return possible_end; } static node_ptr get_prev_to_first_in_group(const slist_node_ptr &bucket_node, const node_ptr &first_in_group) { //Just iterate using group links and obtain the node //before "first_in_group)" node_ptr prev_node = dcast_bucket_ptr(bucket_node); node_ptr nxt(node_traits::get_next(prev_node)); while(nxt != first_in_group){ prev_node = group_traits::get_next(nxt); nxt = node_traits::get_next(prev_node); } return prev_node; } static node_ptr get_first_in_group_of_last_in_group(const node_ptr &last_in_group) { //Just iterate using group links and obtain the node //before "last_in_group" node_ptr possible_first = group_traits::get_next(last_in_group); node_ptr possible_first_prev = group_traits::get_next(possible_first); // The deleted node is at the end of the group, so the // node in the group pointing to it is at the beginning // of the group. Find that to change its pointer. while(possible_first_prev != last_in_group){ possible_first = possible_first_prev; possible_first_prev = group_traits::get_next(possible_first); } return possible_first; } static void erase_from_group(const slist_node_ptr &end_ptr, const node_ptr &to_erase_ptr, detail::true_) { node_ptr nxt_ptr(node_traits::get_next(to_erase_ptr)); node_ptr prev_in_group_ptr(group_traits::get_next(to_erase_ptr)); bool last_in_group = (end_ptr == nxt_ptr) || (group_traits::get_next(nxt_ptr) != to_erase_ptr); bool first_in_group = node_traits::get_next(prev_in_group_ptr) != to_erase_ptr; if(first_in_group && last_in_group){ group_algorithms::init(to_erase_ptr); } else if(first_in_group){ group_algorithms::unlink_after(nxt_ptr); } else if(last_in_group){ node_ptr first_in_group = get_first_in_group_of_last_in_group(to_erase_ptr); group_algorithms::unlink_after(first_in_group); } else{ group_algorithms::unlink_after(nxt_ptr); } } static void erase_from_group(const slist_node_ptr&, const node_ptr&, detail::false_) {} static node_ptr get_last_in_group(const node_ptr &first_in_group, detail::true_) { return group_traits::get_next(first_in_group); } static node_ptr get_last_in_group(const node_ptr &n, detail::false_) { return n; } static void init_group(const node_ptr &n, true_) { group_algorithms::init(n); } static void init_group(const node_ptr &, false_) {} static void insert_in_group(const node_ptr &first_in_group, const node_ptr &n, true_) { if(first_in_group){ if(group_algorithms::unique(first_in_group)) group_algorithms::link_after(first_in_group, n); else{ group_algorithms::link_after(group_algorithms::node_traits::get_next(first_in_group), n); } } else{ group_algorithms::init_header(n); } } static slist_node_ptr get_previous_and_next_in_group ( const slist_node_ptr &i, node_ptr &nxt_in_group //If first_end_ptr == last_end_ptr, then first_end_ptr is the bucket of i //Otherwise first_end_ptr is the first bucket and last_end_ptr the last one. , const slist_node_ptr &first_end_ptr, const slist_node_ptr &last_end_ptr) { slist_node_ptr prev; node_ptr elem(dcast_bucket_ptr(i)); //It's the last in group if the next_node is a bucket slist_node_ptr nxt(node_traits::get_next(elem)); bool last_in_group = (first_end_ptr <= nxt && nxt <= last_end_ptr)/* || (group_traits::get_next(nxt) != elem)*/; //It's the first in group if group_previous's next_node is not //itself, as group list does not link bucket node_ptr prev_in_group(group_traits::get_next(elem)); bool first_in_group = node_traits::get_next(prev_in_group) != elem; if(first_in_group){ node_ptr start_pos; if(last_in_group){ start_pos = elem; nxt_in_group = node_ptr(); } else{ start_pos = prev_in_group; nxt_in_group = node_traits::get_next(elem); } slist_node_ptr bucket_node; if(first_end_ptr != last_end_ptr){ bucket_node = group_functions::get_bucket_before_begin (first_end_ptr, last_end_ptr, start_pos); } else{ bucket_node = first_end_ptr; } prev = group_functions::get_prev_to_first_in_group(bucket_node, elem); } else{ if(last_in_group){ nxt_in_group = group_functions::get_first_in_group_of_last_in_group(elem); } else{ nxt_in_group = node_traits::get_next(elem); } prev = group_traits::get_next(elem); } return prev; } static void insert_in_group(const node_ptr&, const node_ptr&, false_) {} }; template class incremental_rehash_rollback { private: typedef BucketType bucket_type; typedef SplitTraits split_traits; incremental_rehash_rollback(); incremental_rehash_rollback & operator=(const incremental_rehash_rollback &); incremental_rehash_rollback (const incremental_rehash_rollback &); public: incremental_rehash_rollback (bucket_type &source_bucket, bucket_type &destiny_bucket, split_traits &split_traits) : source_bucket_(source_bucket), destiny_bucket_(destiny_bucket) , split_traits_(split_traits), released_(false) {} void release() { released_ = true; } ~incremental_rehash_rollback() { if(!released_){ //If an exception is thrown, just put all moved nodes back in the old bucket //and move back the split mark. destiny_bucket_.splice_after(destiny_bucket_.before_begin(), source_bucket_); split_traits_.decrement(); } } private: bucket_type &source_bucket_; bucket_type &destiny_bucket_; split_traits &split_traits_; bool released_; }; template struct node_functions { static void store_hash(typename NodeTraits::node_ptr p, std::size_t h, true_) { return NodeTraits::set_hash(p, h); } static void store_hash(typename NodeTraits::node_ptr, std::size_t, false_) {} }; } //namespace detail { //!This metafunction will obtain the type of a bucket //!from the value_traits or hook option to be used with //!a hash container. template struct unordered_bucket : public detail::unordered_bucket_impl ::value_traits > {}; //!This metafunction will obtain the type of a bucket pointer //!from the value_traits or hook option to be used with //!a hash container. template struct unordered_bucket_ptr : public detail::unordered_bucket_ptr_impl ::value_traits > {}; //!This metafunction will obtain the type of the default bucket traits //!(when the user does not specify the bucket_traits<> option) from the //!value_traits or hook option to be used with //!a hash container. template struct unordered_default_bucket_traits { typedef typename ValueTraitsOrHookOption:: template pack::value_traits supposed_value_traits; typedef typename detail:: get_slist_impl_from_supposed_value_traits ::type slist_impl; typedef detail::bucket_traits_impl implementation_defined; typedef implementation_defined type; }; struct default_bucket_traits; template struct uset_defaults : pack_options < none , base_hook , constant_time_size , size_type , equal > , hash > , bucket_traits , power_2_buckets , cache_begin , compare_hash , incremental >::type {}; /// @endcond //! The class template hashtable is an intrusive hash table container, that //! is used to construct intrusive unordered_set and unordered_multiset containers. The //! no-throw guarantee holds only, if the Equal object and Hasher don't throw. //! //! hashtable is a semi-intrusive container: each object to be stored in the //! container must contain a proper hook, but the container also needs //! additional auxiliary memory to work: hashtable needs a pointer to an array //! of type `bucket_type` to be passed in the constructor. This bucket array must //! have at least the same lifetime as the container. This makes the use of //! hashtable more complicated than purely intrusive containers. //! `bucket_type` is default-constructible, copyable and assignable //! //! The template parameter \c T is the type to be managed by the container. //! The user can specify additional options and if no options are provided //! default options are used. //! //! The container supports the following options: //! \c base_hook<>/member_hook<>/value_traits<>, //! \c constant_time_size<>, \c size_type<>, \c hash<> and \c equal<> //! \c bucket_traits<>, power_2_buckets<>, cache_begin<> and incremental<>. //! //! hashtable only provides forward iterators but it provides 4 iterator types: //! iterator and const_iterator to navigate through the whole container and //! local_iterator and const_local_iterator to navigate through the values //! stored in a single bucket. Local iterators are faster and smaller. //! //! It's not recommended to use non constant-time size hashtables because several //! key functions, like "empty()", become non-constant time functions. Non //! constant_time size hashtables are mainly provided to support auto-unlink hooks. //! //! hashtables, does not make automatic rehashings nor //! offers functions related to a load factor. Rehashing can be explicitly requested //! and the user must provide a new bucket array that will be used from that moment. //! //! Since no automatic rehashing is done, iterators are never invalidated when //! inserting or erasing elements. Iterators are only invalidated when rehashing. #if defined(BOOST_INTRUSIVE_DOXYGEN_INVOKED) template #else template #endif class hashtable_impl : private detail::clear_on_destructor_base > { template friend class detail::clear_on_destructor_base; public: typedef typename Config::value_traits value_traits; /// @cond static const bool external_value_traits = detail::external_value_traits_is_true::value; typedef typename detail::eval_if_c < external_value_traits , detail::eval_value_traits , detail::identity >::type real_value_traits; typedef typename Config::bucket_traits bucket_traits; static const bool external_bucket_traits = detail::external_bucket_traits_is_true::value; typedef typename detail::eval_if_c < external_bucket_traits , detail::eval_bucket_traits , detail::identity >::type real_bucket_traits; typedef typename detail::get_slist_impl ::type >::type slist_impl; /// @endcond typedef typename real_value_traits::pointer pointer; typedef typename real_value_traits::const_pointer const_pointer; typedef typename real_value_traits::value_type value_type; typedef typename pointer_traits::reference reference; typedef typename pointer_traits::reference const_reference; typedef typename pointer_traits::difference_type difference_type; typedef typename Config::size_type size_type; typedef value_type key_type; typedef typename Config::equal key_equal; typedef typename Config::hash hasher; typedef detail::bucket_impl bucket_type; typedef typename pointer_traits ::template rebind_pointer < bucket_type >::type bucket_ptr; typedef typename slist_impl::iterator siterator; typedef typename slist_impl::const_iterator const_siterator; typedef detail::hashtable_iterator iterator; typedef detail::hashtable_iterator const_iterator; typedef typename real_value_traits::node_traits node_traits; typedef typename node_traits::node node; typedef typename pointer_traits ::template rebind_pointer < node >::type node_ptr; typedef typename pointer_traits ::template rebind_pointer < const node >::type const_node_ptr; typedef typename slist_impl::node_algorithms node_algorithms; static const bool stateful_value_traits = detail::is_stateful_value_traits::value; static const bool store_hash = detail::store_hash_is_true::value; static const bool unique_keys = 0 != (Config::bool_flags & detail::hash_bool_flags::unique_keys_pos); static const bool constant_time_size = 0 != (Config::bool_flags & detail::hash_bool_flags::constant_time_size_pos); static const bool cache_begin = 0 != (Config::bool_flags & detail::hash_bool_flags::cache_begin_pos); static const bool compare_hash = 0 != (Config::bool_flags & detail::hash_bool_flags::compare_hash_pos); static const bool incremental = 0 != (Config::bool_flags & detail::hash_bool_flags::incremental_pos); static const bool power_2_buckets = incremental || (0 != (Config::bool_flags & detail::hash_bool_flags::power_2_buckets_pos)); static const bool optimize_multikey = detail::optimize_multikey_is_true::value && !unique_keys; /// @cond private: //Configuration error: compare_hash<> can't be specified without store_hash<> //See documentation for more explanations BOOST_STATIC_ASSERT((!compare_hash || store_hash)); typedef typename slist_impl::node_ptr slist_node_ptr; typedef typename pointer_traits ::template rebind_pointer < void >::type void_pointer; //We'll define group traits, but these won't be instantiated if //optimize_multikey is not true typedef unordered_group_adapter group_traits; typedef circular_slist_algorithms group_algorithms; typedef detail::bool_ store_hash_t; typedef detail::bool_ optimize_multikey_t; typedef detail::bool_ cache_begin_t; typedef detail::bool_ power_2_buckets_t; typedef detail::size_holder size_traits; typedef detail::size_holder split_traits; typedef detail::group_functions group_functions_t; typedef detail::node_functions node_functions_t; static const std::size_t hashtable_data_bool_flags_mask = ( detail::hash_bool_flags::cache_begin_pos | detail::hash_bool_flags::constant_time_size_pos | detail::hash_bool_flags::incremental_pos ); typedef typename detail::usetopt_mask ::type masked_config_t; detail::hashtable_data_t data_; template struct downcast_node_to_value : public detail::node_to_value { typedef detail::node_to_value base_t; typedef typename base_t::result_type result_type; typedef typename detail::add_const_if_c ::type &first_argument_type; typedef typename detail::add_const_if_c ::type &intermediate_argument_type; downcast_node_to_value(const hashtable_impl *cont) : base_t(cont) {} result_type operator()(first_argument_type arg) const { return this->base_t::operator()(static_cast(arg)); } }; template struct node_cast_adaptor : private detail::ebo_functor_holder { typedef detail::ebo_functor_holder base_t; template node_cast_adaptor(const ConvertibleToF &c2f, const hashtable_impl *cont) : base_t(base_t(c2f, cont)) {} typename base_t::node_ptr operator()(const typename slist_impl::node &to_clone) { return base_t::operator()(static_cast(to_clone)); } void operator()(typename slist_impl::node_ptr to_clone) { base_t::operator()(pointer_traits::pointer_to(static_cast(*to_clone))); } }; private: //noncopyable, movable BOOST_MOVABLE_BUT_NOT_COPYABLE(hashtable_impl) enum { safemode_or_autounlink = (int)real_value_traits::link_mode == (int)auto_unlink || (int)real_value_traits::link_mode == (int)safe_link }; //Constant-time size is incompatible with auto-unlink hooks! BOOST_STATIC_ASSERT(!(constant_time_size && ((int)real_value_traits::link_mode == (int)auto_unlink))); //Cache begin is incompatible with auto-unlink hooks! BOOST_STATIC_ASSERT(!(cache_begin && ((int)real_value_traits::link_mode == (int)auto_unlink))); template node_cast_adaptor > make_node_disposer(const Disposer &disposer) const { return node_cast_adaptor >(disposer, this); } /// @endcond public: typedef detail::insert_commit_data_impl insert_commit_data; typedef detail::transform_iterator < typename slist_impl::iterator , downcast_node_to_value > local_iterator; typedef detail::transform_iterator < typename slist_impl::iterator , downcast_node_to_value > const_local_iterator; /// @cond const real_value_traits &get_real_value_traits(detail::false_) const { return this->data_; } const real_value_traits &get_real_value_traits(detail::true_) const { return data_.get_value_traits(*this); } real_value_traits &get_real_value_traits(detail::false_) { return this->data_; } real_value_traits &get_real_value_traits(detail::true_) { return data_.get_value_traits(*this); } /// @endcond public: const real_value_traits &get_real_value_traits() const { return this->get_real_value_traits(detail::bool_()); } real_value_traits &get_real_value_traits() { return this->get_real_value_traits(detail::bool_()); } //! Requires: buckets must not be being used by any other resource. //! //! Effects: Constructs an empty unordered_set, storing a reference //! to the bucket array and copies of the key_hasher and equal_func functors. //! //! Complexity: Constant. //! //! Throws: If value_traits::node_traits::node //! constructor throws (this does not happen with predefined Boost.Intrusive hooks) //! or the copy constructor or invocation of hash_func or equal_func throws. //! //! Notes: buckets array must be disposed only after //! *this is disposed. hashtable_impl ( const bucket_traits &b_traits , const hasher & hash_func = hasher() , const key_equal &equal_func = key_equal() , const value_traits &v_traits = value_traits()) : data_(b_traits, hash_func, equal_func, v_traits) { priv_initialize_buckets(); this->priv_size_traits().set_size(size_type(0)); size_type bucket_size = this->priv_buckets_len(); BOOST_INTRUSIVE_INVARIANT_ASSERT(bucket_size != 0); //Check power of two bucket array if the option is activated BOOST_INTRUSIVE_INVARIANT_ASSERT (!power_2_buckets || (0 == (bucket_size & (bucket_size-1)))); priv_split_traits().set_size(bucket_size>>1); } //! Effects: to-do //! hashtable_impl(BOOST_RV_REF(hashtable_impl) x) : data_( ::boost::move(x.priv_bucket_traits()) , ::boost::move(x.priv_hasher()) , ::boost::move(x.priv_equal()) , ::boost::move(x.priv_value_traits()) ) { priv_swap_cache(cache_begin_t(), x); x.priv_initialize_cache(); if(constant_time_size){ this->priv_size_traits().set_size(size_type(0)); this->priv_size_traits().set_size(x.priv_size_traits().get_size()); x.priv_size_traits().set_size(size_type(0)); } if(incremental){ this->priv_split_traits().set_size(x.priv_split_traits().get_size()); x.priv_split_traits().set_size(size_type(0)); } } //! Effects: to-do //! hashtable_impl& operator=(BOOST_RV_REF(hashtable_impl) x) { this->swap(x); return *this; } //! Effects: Detaches all elements from this. The objects in the unordered_set //! are not deleted (i.e. no destructors are called). //! //! Complexity: Linear to the number of elements in the unordered_set, if //! it's a safe-mode or auto-unlink value. Otherwise constant. //! //! Throws: Nothing. ~hashtable_impl() {} //! Effects: Returns an iterator pointing to the beginning of the unordered_set. //! //! Complexity: Amortized constant time. //! Worst case (empty unordered_set): O(this->bucket_count()) //! //! Throws: Nothing. iterator begin() { return iterator(this->priv_begin(), this); } //! Effects: Returns a const_iterator pointing to the beginning //! of the unordered_set. //! //! Complexity: Amortized constant time. //! Worst case (empty unordered_set): O(this->bucket_count()) //! //! Throws: Nothing. const_iterator begin() const { return this->cbegin(); } //! Effects: Returns a const_iterator pointing to the beginning //! of the unordered_set. //! //! Complexity: Amortized constant time. //! Worst case (empty unordered_set): O(this->bucket_count()) //! //! Throws: Nothing. const_iterator cbegin() const { return const_iterator(this->priv_begin(), this); } //! Effects: Returns an iterator pointing to the end of the unordered_set. //! //! Complexity: Constant. //! //! Throws: Nothing. iterator end() { return iterator(priv_invalid_local_it(), 0); } //! Effects: Returns a const_iterator pointing to the end of the unordered_set. //! //! Complexity: Constant. //! //! Throws: Nothing. const_iterator end() const { return this->cend(); } //! Effects: Returns a const_iterator pointing to the end of the unordered_set. //! //! Complexity: Constant. //! //! Throws: Nothing. const_iterator cend() const { return const_iterator(priv_invalid_local_it(), 0); } //! Effects: Returns the hasher object used by the unordered_set. //! //! Complexity: Constant. //! //! Throws: If hasher copy-constructor throws. hasher hash_function() const { return this->priv_hasher(); } //! Effects: Returns the key_equal object used by the unordered_set. //! //! Complexity: Constant. //! //! Throws: If key_equal copy-constructor throws. key_equal key_eq() const { return this->priv_equal(); } //! Effects: Returns true if the container is empty. //! //! Complexity: if constant-time size and cache_begin options are disabled, //! average constant time (worst case, with empty() == true: O(this->bucket_count()). //! Otherwise constant. //! //! Throws: Nothing. bool empty() const { if(constant_time_size){ return !this->size(); } else if(cache_begin){ return this->begin() == this->end(); } else{ size_type buckets_len = this->priv_buckets_len(); const bucket_type *b = boost::intrusive::detail::to_raw_pointer(this->priv_buckets()); for (size_type n = 0; n < buckets_len; ++n, ++b){ if(!b->empty()){ return false; } } return true; } } //! Effects: Returns the number of elements stored in the unordered_set. //! //! Complexity: Linear to elements contained in *this if //! constant_time_size is false. Constant-time otherwise. //! //! Throws: Nothing. size_type size() const { if(constant_time_size) return this->priv_size_traits().get_size(); else{ size_type len = 0; size_type buckets_len = this->priv_buckets_len(); const bucket_type *b = boost::intrusive::detail::to_raw_pointer(this->priv_buckets()); for (size_type n = 0; n < buckets_len; ++n, ++b){ len += b->size(); } return len; } } //! Requires: the hasher and the equality function unqualified swap //! call should not throw. //! //! Effects: Swaps the contents of two unordered_sets. //! Swaps also the contained bucket array and equality and hasher functors. //! //! Complexity: Constant. //! //! Throws: If the swap() call for the comparison or hash functors //! found using ADL throw. Basic guarantee. void swap(hashtable_impl& other) { using std::swap; //These can throw swap(this->priv_equal(), other.priv_equal()); swap(this->priv_hasher(), other.priv_hasher()); //These can't throw swap(this->priv_bucket_traits(), other.priv_bucket_traits()); swap(this->priv_value_traits(), other.priv_value_traits()); priv_swap_cache(cache_begin_t(), other); if(constant_time_size){ size_type backup = this->priv_size_traits().get_size(); this->priv_size_traits().set_size(other.priv_size_traits().get_size()); other.priv_size_traits().set_size(backup); } if(incremental){ size_type backup = this->priv_split_traits().get_size(); this->priv_split_traits().set_size(other.priv_split_traits().get_size()); other.priv_split_traits().set_size(backup); } } //! Requires: Disposer::operator()(pointer) shouldn't throw //! Cloner should yield to nodes that compare equal and produce the same //! hash than the original node. //! //! Effects: Erases all the elements from *this //! calling Disposer::operator()(pointer), clones all the //! elements from src calling Cloner::operator()(const_reference ) //! and inserts them on *this. The hash function and the equality //! predicate are copied from the source. //! //! If store_hash option is true, this method does not use the hash function. //! //! If any operation throws, all cloned elements are unlinked and disposed //! calling Disposer::operator()(pointer). //! //! Complexity: Linear to erased plus inserted elements. //! //! Throws: If cloner or hasher throw or hash or equality predicate copying //! throws. Basic guarantee. template void clone_from(const hashtable_impl &src, Cloner cloner, Disposer disposer) { this->clear_and_dispose(disposer); if(!constant_time_size || !src.empty()){ const size_type src_bucket_count = src.bucket_count(); const size_type dst_bucket_count = this->bucket_count(); //Check power of two bucket array if the option is activated BOOST_INTRUSIVE_INVARIANT_ASSERT (!power_2_buckets || (0 == (src_bucket_count & (src_bucket_count-1)))); BOOST_INTRUSIVE_INVARIANT_ASSERT (!power_2_buckets || (0 == (dst_bucket_count & (dst_bucket_count-1)))); //If src bucket count is bigger or equal, structural copy is possible if(!incremental && (src_bucket_count >= dst_bucket_count)){ //First clone the first ones const bucket_ptr src_buckets = src.priv_buckets(); const bucket_ptr dst_buckets = this->priv_buckets(); size_type constructed; typedef node_cast_adaptor > NodeDisposer; typedef node_cast_adaptor > NodeCloner; NodeDisposer node_disp(disposer, this); detail::exception_array_disposer rollback(dst_buckets[0], node_disp, constructed); for( constructed = 0 ; constructed < dst_bucket_count ; ++constructed){ dst_buckets[constructed].clone_from ( src_buckets[constructed] , NodeCloner(cloner, this), node_disp); } if(src_bucket_count != dst_bucket_count){ //Now insert the remaining ones using the modulo trick for(//"constructed" comes from the previous loop ; constructed < src_bucket_count ; ++constructed){ bucket_type &dst_b = dst_buckets[priv_hash_to_bucket(constructed, dst_bucket_count, dst_bucket_count)]; bucket_type &src_b = src_buckets[constructed]; for( siterator b(src_b.begin()), e(src_b.end()) ; b != e ; ++b){ dst_b.push_front(*(NodeCloner(cloner, this)(*b.pointed_node()))); } } } this->priv_hasher() = src.priv_hasher(); this->priv_equal() = src.priv_equal(); rollback.release(); this->priv_size_traits().set_size(src.priv_size_traits().get_size()); this->priv_split_traits().set_size(dst_bucket_count); priv_insertion_update_cache(0u); priv_erasure_update_cache(); } else if(store_hash){ //Unlike previous cloning algorithm, this can throw //if cloner, hasher or comparison functor throw const_iterator b(src.begin()), e(src.end()); detail::exception_disposer rollback(*this, disposer); for(; b != e; ++b){ std::size_t hash_value = this->priv_stored_or_compute_hash(*b, store_hash_t());; this->priv_insert_equal_with_hash(*cloner(*b), hash_value); } rollback.release(); } else{ //Unlike previous cloning algorithm, this can throw //if cloner, hasher or comparison functor throw const_iterator b(src.begin()), e(src.end()); detail::exception_disposer rollback(*this, disposer); for(; b != e; ++b){ this->insert_equal(*cloner(*b)); } rollback.release(); } } } //! Requires: value must be an lvalue //! //! Effects: Inserts the value into the unordered_set. //! //! Returns: An iterator to the inserted value. //! //! Complexity: Average case O(1), worst case O(this->size()). //! //! Throws: If the internal hasher or the equality functor throws. Strong guarantee. //! //! Note: Does not affect the validity of iterators and references. //! No copy-constructors are called. iterator insert_equal(reference value) { size_type bucket_num; std::size_t hash_value; siterator prev; siterator it = this->priv_find (value, this->priv_hasher(), this->priv_equal(), bucket_num, hash_value, prev); return priv_insert_equal_find(value, bucket_num, hash_value, it); } //! Requires: Dereferencing iterator must yield an lvalue //! of type value_type. //! //! Effects: Equivalent to this->insert_equal(t) for each element in [b, e). //! //! Complexity: Average case O(N), where N is std::distance(b, e). //! Worst case O(N*this->size()). //! //! Throws: If the internal hasher or the equality functor throws. Basic guarantee. //! //! Note: Does not affect the validity of iterators and references. //! No copy-constructors are called. template void insert_equal(Iterator b, Iterator e) { for (; b != e; ++b) this->insert_equal(*b); } //! Requires: value must be an lvalue //! //! Effects: Tries to inserts value into the unordered_set. //! //! Returns: If the value //! is not already present inserts it and returns a pair containing the //! iterator to the new value and true. If there is an equivalent value //! returns a pair containing an iterator to the already present value //! and false. //! //! Complexity: Average case O(1), worst case O(this->size()). //! //! Throws: If the internal hasher or the equality functor throws. Strong guarantee. //! //! Note: Does not affect the validity of iterators and references. //! No copy-constructors are called. std::pair insert_unique(reference value) { insert_commit_data commit_data; std::pair ret = this->insert_unique_check (value, this->priv_hasher(), this->priv_equal(), commit_data); if(!ret.second) return ret; return std::pair (this->insert_unique_commit(value, commit_data), true); } //! Requires: Dereferencing iterator must yield an lvalue //! of type value_type. //! //! Effects: Equivalent to this->insert_unique(t) for each element in [b, e). //! //! Complexity: Average case O(N), where N is std::distance(b, e). //! Worst case O(N*this->size()). //! //! Throws: If the internal hasher or the equality functor throws. Basic guarantee. //! //! Note: Does not affect the validity of iterators and references. //! No copy-constructors are called. template void insert_unique(Iterator b, Iterator e) { for (; b != e; ++b) this->insert_unique(*b); } //! Requires: "hash_func" must be a hash function that induces //! the same hash values as the stored hasher. The difference is that //! "hash_func" hashes the given key instead of the value_type. //! //! "equal_func" must be a equality function that induces //! the same equality as key_equal. The difference is that //! "equal_func" compares an arbitrary key with the contained values. //! //! Effects: Checks if a value can be inserted in the unordered_set, using //! a user provided key instead of the value itself. //! //! Returns: If there is an equivalent value //! returns a pair containing an iterator to the already present value //! and false. If the value can be inserted returns true in the returned //! pair boolean and fills "commit_data" that is meant to be used with //! the "insert_commit" function. //! //! Complexity: Average case O(1), worst case O(this->size()). //! //! Throws: If hash_func or equal_func throw. Strong guarantee. //! //! Notes: This function is used to improve performance when constructing //! a value_type is expensive: if there is an equivalent value //! the constructed object must be discarded. Many times, the part of the //! node that is used to impose the hash or the equality is much cheaper to //! construct than the value_type and this function offers the possibility to //! use that the part to check if the insertion will be successful. //! //! If the check is successful, the user can construct the value_type and use //! "insert_commit" to insert the object in constant-time. //! //! "commit_data" remains valid for a subsequent "insert_commit" only if no more //! objects are inserted or erased from the unordered_set. //! //! After a successful rehashing insert_commit_data remains valid. template std::pair insert_unique_check ( const KeyType &key , KeyHasher hash_func , KeyValueEqual equal_func , insert_commit_data &commit_data) { size_type bucket_num; siterator prev; siterator prev_pos = this->priv_find(key, hash_func, equal_func, bucket_num, commit_data.hash, prev); bool success = prev_pos == priv_invalid_local_it(); if(success){ prev_pos = prev; } return std::pair(iterator(prev_pos, this),success); } //! Requires: value must be an lvalue of type value_type. commit_data //! must have been obtained from a previous call to "insert_check". //! No objects should have been inserted or erased from the unordered_set between //! the "insert_check" that filled "commit_data" and the call to "insert_commit". //! //! Effects: Inserts the value in the unordered_set using the information obtained //! from the "commit_data" that a previous "insert_check" filled. //! //! Returns: An iterator to the newly inserted object. //! //! Complexity: Constant time. //! //! Throws: Nothing. //! //! Notes: This function has only sense if a "insert_check" has been //! previously executed to fill "commit_data". No value should be inserted or //! erased between the "insert_check" and "insert_commit" calls. //! //! After a successful rehashing insert_commit_data remains valid. iterator insert_unique_commit(reference value, const insert_commit_data &commit_data) { size_type bucket_num = priv_hash_to_bucket(commit_data.hash); bucket_type &b = this->priv_buckets()[bucket_num]; this->priv_size_traits().increment(); node_ptr n = pointer_traits::pointer_to(priv_value_to_node(value)); node_functions_t::store_hash(n, commit_data.hash, store_hash_t()); if(safemode_or_autounlink) BOOST_INTRUSIVE_SAFE_HOOK_DEFAULT_ASSERT(node_algorithms::unique(n)); priv_insertion_update_cache(bucket_num); group_functions_t::insert_in_group(node_ptr(), n, optimize_multikey_t()); return iterator(b.insert_after(b.before_begin(), *n), this); } //! Effects: Erases the element pointed to by i. //! //! Complexity: Average case O(1), worst case O(this->size()). //! //! Throws: Nothing. //! //! Note: Invalidates the iterators (but not the references) //! to the erased element. No destructors are called. void erase(const_iterator i) { this->erase_and_dispose(i, detail::null_disposer()); } //! Effects: Erases the range pointed to by b end e. //! //! Complexity: Average case O(std::distance(b, e)), //! worst case O(this->size()). //! //! Throws: Nothing. //! //! Note: Invalidates the iterators (but not the references) //! to the erased elements. No destructors are called. void erase(const_iterator b, const_iterator e) { this->erase_and_dispose(b, e, detail::null_disposer()); } //! Effects: Erases all the elements with the given value. //! //! Returns: The number of erased elements. //! //! Complexity: Average case O(this->count(value)). //! Worst case O(this->size()). //! //! Throws: If the internal hasher or the equality functor throws. //! Basic guarantee. //! //! Note: Invalidates the iterators (but not the references) //! to the erased elements. No destructors are called. size_type erase(const_reference value) { return this->erase(value, this->priv_hasher(), this->priv_equal()); } //! Requires: "hash_func" must be a hash function that induces //! the same hash values as the stored hasher. The difference is that //! "hash_func" hashes the given key instead of the value_type. //! //! "equal_func" must be a equality function that induces //! the same equality as key_equal. The difference is that //! "equal_func" compares an arbitrary key with the contained values. //! //! Effects: Erases all the elements that have the same hash and //! compare equal with the given key. //! //! Returns: The number of erased elements. //! //! Complexity: Average case O(this->count(value)). //! Worst case O(this->size()). //! //! Throws: If hash_func or equal_func throw. Basic guarantee. //! //! Note: Invalidates the iterators (but not the references) //! to the erased elements. No destructors are called. template size_type erase(const KeyType& key, KeyHasher hash_func, KeyValueEqual equal_func) { return this->erase_and_dispose(key, hash_func, equal_func, detail::null_disposer()); } //! Requires: Disposer::operator()(pointer) shouldn't throw. //! //! Effects: Erases the element pointed to by i. //! Disposer::operator()(pointer) is called for the removed element. //! //! Complexity: Average case O(1), worst case O(this->size()). //! //! Throws: Nothing. //! //! Note: Invalidates the iterators //! to the erased elements. template void erase_and_dispose(const_iterator i, Disposer disposer /// @cond , typename detail::enable_if_c::value >::type * = 0 /// @endcond ) { priv_erase(i, disposer, optimize_multikey_t()); this->priv_size_traits().decrement(); priv_erasure_update_cache(); } //! Requires: Disposer::operator()(pointer) shouldn't throw. //! //! Effects: Erases the range pointed to by b end e. //! Disposer::operator()(pointer) is called for the removed elements. //! //! Complexity: Average case O(std::distance(b, e)), //! worst case O(this->size()). //! //! Throws: Nothing. //! //! Note: Invalidates the iterators //! to the erased elements. template void erase_and_dispose(const_iterator b, const_iterator e, Disposer disposer) { if(b != e){ //Get the bucket number and local iterator for both iterators siterator first_local_it(b.slist_it()); size_type first_bucket_num = this->priv_get_bucket_num(first_local_it); siterator before_first_local_it = priv_get_previous(priv_buckets()[first_bucket_num], first_local_it); size_type last_bucket_num; siterator last_local_it; //For the end iterator, we will assign the end iterator //of the last bucket if(e == this->end()){ last_bucket_num = this->bucket_count() - 1; last_local_it = priv_buckets()[last_bucket_num].end(); } else{ last_local_it = e.slist_it(); last_bucket_num = this->priv_get_bucket_num(last_local_it); } priv_erase_range(before_first_local_it, first_bucket_num, last_local_it, last_bucket_num, disposer); priv_erasure_update_cache(first_bucket_num, last_bucket_num); } } //! Requires: Disposer::operator()(pointer) shouldn't throw. //! //! Effects: Erases all the elements with the given value. //! Disposer::operator()(pointer) is called for the removed elements. //! //! Returns: The number of erased elements. //! //! Complexity: Average case O(this->count(value)). //! Worst case O(this->size()). //! //! Throws: If the internal hasher or the equality functor throws. //! Basic guarantee. //! //! Note: Invalidates the iterators (but not the references) //! to the erased elements. No destructors are called. template size_type erase_and_dispose(const_reference value, Disposer disposer) { return this->erase_and_dispose(value, priv_hasher(), priv_equal(), disposer); } //! Requires: Disposer::operator()(pointer) shouldn't throw. //! //! Effects: Erases all the elements with the given key. //! according to the comparison functor "equal_func". //! Disposer::operator()(pointer) is called for the removed elements. //! //! Returns: The number of erased elements. //! //! Complexity: Average case O(this->count(value)). //! Worst case O(this->size()). //! //! Throws: If hash_func or equal_func throw. Basic guarantee. //! //! Note: Invalidates the iterators //! to the erased elements. template size_type erase_and_dispose(const KeyType& key, KeyHasher hash_func ,KeyValueEqual equal_func, Disposer disposer) { size_type bucket_num; std::size_t h; siterator prev; siterator it = this->priv_find(key, hash_func, equal_func, bucket_num, h, prev); bool success = it != priv_invalid_local_it(); size_type count(0); if(!success){ return 0; } else if(optimize_multikey){ siterator last = bucket_type::s_iterator_to (*node_traits::get_next(group_functions_t::get_last_in_group (dcast_bucket_ptr(it.pointed_node()), optimize_multikey_t()))); this->priv_erase_range_impl(bucket_num, prev, last, disposer, count); } else{ //If found erase all equal values bucket_type &b = this->priv_buckets()[bucket_num]; for(siterator end = b.end(); it != end; ++count, ++it){ slist_node_ptr n(it.pointed_node()); const value_type &v = priv_value_from_slist_node(n); if(compare_hash){ std::size_t vh = this->priv_stored_or_compute_hash(v, store_hash_t()); if(h != vh || !equal_func(key, v)){ break; } } else if(!equal_func(key, v)){ break; } this->priv_size_traits().decrement(); } b.erase_after_and_dispose(prev, it, make_node_disposer(disposer)); } priv_erasure_update_cache(); return count; } //! Effects: Erases all of the elements. //! //! Complexity: Linear to the number of elements on the container. //! if it's a safe-mode or auto-unlink value_type. Constant time otherwise. //! //! Throws: Nothing. //! //! Note: Invalidates the iterators (but not the references) //! to the erased elements. No destructors are called. void clear() { priv_clear_buckets(); this->priv_size_traits().set_size(size_type(0)); } //! Requires: Disposer::operator()(pointer) shouldn't throw. //! //! Effects: Erases all of the elements. //! //! Complexity: Linear to the number of elements on the container. //! Disposer::operator()(pointer) is called for the removed elements. //! //! Throws: Nothing. //! //! Note: Invalidates the iterators (but not the references) //! to the erased elements. No destructors are called. template void clear_and_dispose(Disposer disposer) { if(!constant_time_size || !this->empty()){ size_type num_buckets = this->bucket_count(); bucket_ptr b = this->priv_buckets(); for(; num_buckets--; ++b){ b->clear_and_dispose(make_node_disposer(disposer)); } this->priv_size_traits().set_size(size_type(0)); } priv_initialize_cache(); } //! Effects: Returns the number of contained elements with the given value //! //! Complexity: Average case O(1), worst case O(this->size()). //! //! Throws: If the internal hasher or the equality functor throws. size_type count(const_reference value) const { return this->count(value, this->priv_hasher(), this->priv_equal()); } //! Requires: "hash_func" must be a hash function that induces //! the same hash values as the stored hasher. The difference is that //! "hash_func" hashes the given key instead of the value_type. //! //! "equal_func" must be a equality function that induces //! the same equality as key_equal. The difference is that //! "equal_func" compares an arbitrary key with the contained values. //! //! Effects: Returns the number of contained elements with the given key //! //! Complexity: Average case O(1), worst case O(this->size()). //! //! Throws: If hash_func or equal throw. template size_type count(const KeyType &key, const KeyHasher &hash_func, const KeyValueEqual &equal_func) const { size_type bucket_n1, bucket_n2, count; this->priv_equal_range(key, hash_func, equal_func, bucket_n1, bucket_n2, count); return count; } //! Effects: Finds an iterator to the first element is equal to //! "value" or end() if that element does not exist. //! //! Complexity: Average case O(1), worst case O(this->size()). //! //! Throws: If the internal hasher or the equality functor throws. iterator find(const_reference value) { return this->find(value, this->priv_hasher(), this->priv_equal()); } //! Requires: "hash_func" must be a hash function that induces //! the same hash values as the stored hasher. The difference is that //! "hash_func" hashes the given key instead of the value_type. //! //! "equal_func" must be a equality function that induces //! the same equality as key_equal. The difference is that //! "equal_func" compares an arbitrary key with the contained values. //! //! Effects: Finds an iterator to the first element whose key is //! "key" according to the given hash and equality functor or end() if //! that element does not exist. //! //! Complexity: Average case O(1), worst case O(this->size()). //! //! Throws: If hash_func or equal_func throw. //! //! Note: This function is used when constructing a value_type //! is expensive and the value_type can be compared with a cheaper //! key type. Usually this key is part of the value_type. template iterator find(const KeyType &key, KeyHasher hash_func, KeyValueEqual equal_func) { size_type bucket_n; std::size_t hash; siterator prev; siterator local_it = this->priv_find(key, hash_func, equal_func, bucket_n, hash, prev); return iterator(local_it, this); } //! Effects: Finds a const_iterator to the first element whose key is //! "key" or end() if that element does not exist. //! //! Complexity: Average case O(1), worst case O(this->size()). //! //! Throws: If the internal hasher or the equality functor throws. const_iterator find(const_reference value) const { return this->find(value, this->priv_hasher(), this->priv_equal()); } //! Requires: "hash_func" must be a hash function that induces //! the same hash values as the stored hasher. The difference is that //! "hash_func" hashes the given key instead of the value_type. //! //! "equal_func" must be a equality function that induces //! the same equality as key_equal. The difference is that //! "equal_func" compares an arbitrary key with the contained values. //! //! Effects: Finds an iterator to the first element whose key is //! "key" according to the given hasher and equality functor or end() if //! that element does not exist. //! //! Complexity: Average case O(1), worst case O(this->size()). //! //! Throws: If hash_func or equal_func throw. //! //! Note: This function is used when constructing a value_type //! is expensive and the value_type can be compared with a cheaper //! key type. Usually this key is part of the value_type. template const_iterator find (const KeyType &key, KeyHasher hash_func, KeyValueEqual equal_func) const { size_type bucket_n; std::size_t hash_value; siterator prev; siterator sit = this->priv_find(key, hash_func, equal_func, bucket_n, hash_value, prev); return const_iterator(sit, this); } //! Effects: Returns a range containing all elements with values equivalent //! to value. Returns std::make_pair(this->end(), this->end()) if no such //! elements exist. //! //! Complexity: Average case O(this->count(value)). Worst case O(this->size()). //! //! Throws: If the internal hasher or the equality functor throws. std::pair equal_range(const_reference value) { return this->equal_range(value, this->priv_hasher(), this->priv_equal()); } //! Requires: "hash_func" must be a hash function that induces //! the same hash values as the stored hasher. The difference is that //! "hash_func" hashes the given key instead of the value_type. //! //! "equal_func" must be a equality function that induces //! the same equality as key_equal. The difference is that //! "equal_func" compares an arbitrary key with the contained values. //! //! Effects: Returns a range containing all elements with equivalent //! keys. Returns std::make_pair(this->end(), this->end()) if no such //! elements exist. //! //! Complexity: Average case O(this->count(key, hash_func, equal_func)). //! Worst case O(this->size()). //! //! Throws: If hash_func or the equal_func throw. //! //! Note: This function is used when constructing a value_type //! is expensive and the value_type can be compared with a cheaper //! key type. Usually this key is part of the value_type. template std::pair equal_range (const KeyType &key, KeyHasher hash_func, KeyValueEqual equal_func) { size_type bucket_n1, bucket_n2, count; std::pair ret = this->priv_equal_range (key, hash_func, equal_func, bucket_n1, bucket_n2, count); return std::pair (iterator(ret.first, this), iterator(ret.second, this)); } //! Effects: Returns a range containing all elements with values equivalent //! to value. Returns std::make_pair(this->end(), this->end()) if no such //! elements exist. //! //! Complexity: Average case O(this->count(value)). Worst case O(this->size()). //! //! Throws: If the internal hasher or the equality functor throws. std::pair equal_range(const_reference value) const { return this->equal_range(value, this->priv_hasher(), this->priv_equal()); } //! Requires: "hash_func" must be a hash function that induces //! the same hash values as the stored hasher. The difference is that //! "hash_func" hashes the given key instead of the value_type. //! //! "equal_func" must be a equality function that induces //! the same equality as key_equal. The difference is that //! "equal_func" compares an arbitrary key with the contained values. //! //! Effects: Returns a range containing all elements with equivalent //! keys. Returns std::make_pair(this->end(), this->end()) if no such //! elements exist. //! //! Complexity: Average case O(this->count(key, hash_func, equal_func)). //! Worst case O(this->size()). //! //! Throws: If the hasher or equal_func throw. //! //! Note: This function is used when constructing a value_type //! is expensive and the value_type can be compared with a cheaper //! key type. Usually this key is part of the value_type. template std::pair equal_range (const KeyType &key, KeyHasher hash_func, KeyValueEqual equal_func) const { size_type bucket_n1, bucket_n2, count; std::pair ret = this->priv_equal_range(key, hash_func, equal_func, bucket_n1, bucket_n2, count); return std::pair (const_iterator(ret.first, this), const_iterator(ret.second, this)); } //! Requires: value must be an lvalue and shall be in a unordered_set of //! appropriate type. Otherwise the behavior is undefined. //! //! Effects: Returns: a valid iterator belonging to the unordered_set //! that points to the value //! //! Complexity: Constant. //! //! Throws: If the internal hash function throws. iterator iterator_to(reference value) { return iterator(bucket_type::s_iterator_to(priv_value_to_node(value)), this); } //! Requires: value must be an lvalue and shall be in a unordered_set of //! appropriate type. Otherwise the behavior is undefined. //! //! Effects: Returns: a valid const_iterator belonging to the //! unordered_set that points to the value //! //! Complexity: Constant. //! //! Throws: If the internal hash function throws. const_iterator iterator_to(const_reference value) const { siterator sit = bucket_type::s_iterator_to(const_cast(this->priv_value_to_node(value))); return const_iterator(sit, this); } //! Requires: value must be an lvalue and shall be in a unordered_set of //! appropriate type. Otherwise the behavior is undefined. //! //! Effects: Returns: a valid local_iterator belonging to the unordered_set //! that points to the value //! //! Complexity: Constant. //! //! Throws: Nothing. //! //! Note: This static function is available only if the value traits //! is stateless. static local_iterator s_local_iterator_to(reference value) { BOOST_STATIC_ASSERT((!stateful_value_traits)); siterator sit = bucket_type::s_iterator_to(((hashtable_impl*)0)->priv_value_to_node(value)); return local_iterator(sit, (hashtable_impl*)0); } //! Requires: value must be an lvalue and shall be in a unordered_set of //! appropriate type. Otherwise the behavior is undefined. //! //! Effects: Returns: a valid const_local_iterator belonging to //! the unordered_set that points to the value //! //! Complexity: Constant. //! //! Throws: Nothing. //! //! Note: This static function is available only if the value traits //! is stateless. static const_local_iterator s_local_iterator_to(const_reference value) { BOOST_STATIC_ASSERT((!stateful_value_traits)); siterator sit = bucket_type::s_iterator_to(((hashtable_impl*)0)->priv_value_to_node(const_cast(value))); return const_local_iterator(sit, (hashtable_impl*)0); } //! Requires: value must be an lvalue and shall be in a unordered_set of //! appropriate type. Otherwise the behavior is undefined. //! //! Effects: Returns: a valid local_iterator belonging to the unordered_set //! that points to the value //! //! Complexity: Constant. //! //! Throws: Nothing. local_iterator local_iterator_to(reference value) { siterator sit = bucket_type::s_iterator_to(this->priv_value_to_node(value)); return local_iterator(sit, this); } //! Requires: value must be an lvalue and shall be in a unordered_set of //! appropriate type. Otherwise the behavior is undefined. //! //! Effects: Returns: a valid const_local_iterator belonging to //! the unordered_set that points to the value //! //! Complexity: Constant. //! //! Throws: Nothing. const_local_iterator local_iterator_to(const_reference value) const { siterator sit = bucket_type::s_iterator_to (const_cast(this->priv_value_to_node(value))); return const_local_iterator(sit, this); } //! Effects: Returns the number of buckets passed in the constructor //! or the last rehash function. //! //! Complexity: Constant. //! //! Throws: Nothing. size_type bucket_count() const { return this->priv_buckets_len(); } //! Requires: n is in the range [0, this->bucket_count()). //! //! Effects: Returns the number of elements in the nth bucket. //! //! Complexity: Constant. //! //! Throws: Nothing. size_type bucket_size(size_type n) const { return this->priv_buckets()[n].size(); } //! Effects: Returns the index of the bucket in which elements //! with keys equivalent to k would be found, if any such element existed. //! //! Complexity: Constant. //! //! Throws: If the hash functor throws. //! //! Note: the return value is in the range [0, this->bucket_count()). size_type bucket(const key_type& k) const { return this->bucket(k, this->priv_hasher()); } //! Requires: "hash_func" must be a hash function that induces //! the same hash values as the stored hasher. The difference is that //! "hash_func" hashes the given key instead of the value_type. //! //! Effects: Returns the index of the bucket in which elements //! with keys equivalent to k would be found, if any such element existed. //! //! Complexity: Constant. //! //! Throws: If hash_func throws. //! //! Note: the return value is in the range [0, this->bucket_count()). template size_type bucket(const KeyType& k, const KeyHasher &hash_func) const { return priv_hash_to_bucket(hash_func(k)); } //! Effects: Returns the bucket array pointer passed in the constructor //! or the last rehash function. //! //! Complexity: Constant. //! //! Throws: Nothing. bucket_ptr bucket_pointer() const { return this->priv_buckets(); } //! Requires: n is in the range [0, this->bucket_count()). //! //! Effects: Returns a local_iterator pointing to the beginning //! of the sequence stored in the bucket n. //! //! Complexity: Constant. //! //! Throws: Nothing. //! //! Note: [this->begin(n), this->end(n)) is a valid range //! containing all of the elements in the nth bucket. local_iterator begin(size_type n) { return local_iterator(this->priv_buckets()[n].begin(), this); } //! Requires: n is in the range [0, this->bucket_count()). //! //! Effects: Returns a const_local_iterator pointing to the beginning //! of the sequence stored in the bucket n. //! //! Complexity: Constant. //! //! Throws: Nothing. //! //! Note: [this->begin(n), this->end(n)) is a valid range //! containing all of the elements in the nth bucket. const_local_iterator begin(size_type n) const { return this->cbegin(n); } //! Requires: n is in the range [0, this->bucket_count()). //! //! Effects: Returns a const_local_iterator pointing to the beginning //! of the sequence stored in the bucket n. //! //! Complexity: Constant. //! //! Throws: Nothing. //! //! Note: [this->begin(n), this->end(n)) is a valid range //! containing all of the elements in the nth bucket. const_local_iterator cbegin(size_type n) const { siterator sit = const_cast(this->priv_buckets()[n]).begin(); return const_local_iterator(sit, this); } //! Requires: n is in the range [0, this->bucket_count()). //! //! Effects: Returns a local_iterator pointing to the end //! of the sequence stored in the bucket n. //! //! Complexity: Constant. //! //! Throws: Nothing. //! //! Note: [this->begin(n), this->end(n)) is a valid range //! containing all of the elements in the nth bucket. local_iterator end(size_type n) { return local_iterator(this->priv_buckets()[n].end(), this); } //! Requires: n is in the range [0, this->bucket_count()). //! //! Effects: Returns a const_local_iterator pointing to the end //! of the sequence stored in the bucket n. //! //! Complexity: Constant. //! //! Throws: Nothing. //! //! Note: [this->begin(n), this->end(n)) is a valid range //! containing all of the elements in the nth bucket. const_local_iterator end(size_type n) const { return this->cend(n); } //! Requires: n is in the range [0, this->bucket_count()). //! //! Effects: Returns a const_local_iterator pointing to the end //! of the sequence stored in the bucket n. //! //! Complexity: Constant. //! //! Throws: Nothing. //! //! Note: [this->begin(n), this->end(n)) is a valid range //! containing all of the elements in the nth bucket. const_local_iterator cend(size_type n) const { return const_local_iterator(const_cast(this->priv_buckets()[n]).end(), this); } //! Requires: new_buckets must be a pointer to a new bucket array //! or the same as the old bucket array. new_size is the length of the //! the array pointed by new_buckets. If new_buckets == this->bucket_pointer() //! n can be bigger or smaller than this->bucket_count(). //! 'new_bucket_traits' copy constructor should not throw. //! //! Effects: Updates the internal reference with the new bucket erases //! the values from the old bucket and inserts then in the new one. //! Bucket traits hold by *this is assigned from new_bucket_traits. //! If the container is configured as incremental<>, the split bucket is set //! to the new bucket_len(). //! //! If store_hash option is true, this method does not use the hash function. //! //! Complexity: Average case linear in this->size(), worst case quadratic. //! //! Throws: If the hasher functor throws. Basic guarantee. void rehash(const bucket_traits &new_bucket_traits) { bucket_ptr new_buckets = new_bucket_traits.bucket_begin(); size_type new_buckets_len = new_bucket_traits.bucket_count(); bucket_ptr old_buckets = this->priv_buckets(); size_type old_buckets_len = this->priv_buckets_len(); //Check power of two bucket array if the option is activated BOOST_INTRUSIVE_INVARIANT_ASSERT (!power_2_buckets || (0 == (new_buckets_len & (new_buckets_len-1u)))); size_type n = priv_get_cache_bucket_num(); const bool same_buffer = old_buckets == new_buckets; //If the new bucket length is a common factor //of the old one we can avoid hash calculations. const bool fast_shrink = (!incremental) && (old_buckets_len > new_buckets_len) && (power_2_buckets ||(old_buckets_len % new_buckets_len) == 0); //If we are shrinking the same bucket array and it's //is a fast shrink, just rehash the last nodes size_type new_first_bucket_num = new_buckets_len; if(same_buffer && fast_shrink && (n < new_buckets_len)){ n = new_buckets_len; new_first_bucket_num = priv_get_cache_bucket_num(); } //Anti-exception stuff: they destroy the elements if something goes wrong. //If the source and destination buckets are the same, the second rollback function //is harmless, because all elements have been already unlinked and destroyed typedef detail::init_disposer NodeDisposer; NodeDisposer node_disp; bucket_type & newbuck = new_buckets[0]; bucket_type & oldbuck = old_buckets[0]; detail::exception_array_disposer rollback1(newbuck, node_disp, new_buckets_len); detail::exception_array_disposer rollback2(oldbuck, node_disp, old_buckets_len); //Put size in a safe value for rollback exception size_type size_backup = this->priv_size_traits().get_size(); this->priv_size_traits().set_size(0); //Put cache to safe position priv_initialize_cache(); priv_insertion_update_cache(size_type(0u)); //Iterate through nodes for(; n < old_buckets_len; ++n){ bucket_type &old_bucket = old_buckets[n]; if(!fast_shrink){ siterator before_i(old_bucket.before_begin()); siterator end(old_bucket.end()); siterator i(old_bucket.begin()); for(;i != end; ++i){ const value_type &v = priv_value_from_slist_node(i.pointed_node()); const std::size_t hash_value = this->priv_stored_or_compute_hash(v, store_hash_t()); const size_type new_n = priv_hash_to_bucket(hash_value, new_buckets_len, new_buckets_len); if(cache_begin && new_n < new_first_bucket_num) new_first_bucket_num = new_n; siterator last = bucket_type::s_iterator_to (*group_functions_t::get_last_in_group (dcast_bucket_ptr(i.pointed_node()), optimize_multikey_t())); if(same_buffer && new_n == n){ before_i = last; } else{ bucket_type &new_b = new_buckets[new_n]; new_b.splice_after(new_b.before_begin(), old_bucket, before_i, last); } i = before_i; } } else{ const size_type new_n = priv_hash_to_bucket(n, new_buckets_len, new_buckets_len); if(cache_begin && new_n < new_first_bucket_num) new_first_bucket_num = new_n; bucket_type &new_b = new_buckets[new_n]; if(!old_bucket.empty()){ new_b.splice_after( new_b.before_begin() , old_bucket , old_bucket.before_begin() , priv_get_last(old_bucket)); } } } this->priv_size_traits().set_size(size_backup); this->priv_split_traits().set_size(new_buckets_len); this->priv_real_bucket_traits() = new_bucket_traits; priv_initialize_cache(); priv_insertion_update_cache(new_first_bucket_num); rollback1.release(); rollback2.release(); } //! Requires: //! //! Effects: //! //! Complexity: //! //! Throws: //! //! Note: this method is only available if incremental option is activated. bool incremental_rehash(bool grow = true) { //This function is only available for containers with incremental hashing BOOST_STATIC_ASSERT(( incremental && power_2_buckets )); size_type split_idx = priv_split_traits().get_size(); size_type bucket_len = priv_buckets_len(); if(grow){ //Test if the split variable can be changed if(split_idx >= bucket_len) return false; size_type bucket_len = priv_buckets_len(); size_type bucket_to_rehash = split_idx - bucket_len/2; bucket_type &old_bucket = this->priv_buckets()[bucket_to_rehash]; siterator before_i(old_bucket.before_begin()); siterator end(old_bucket.end()); siterator i(old_bucket.begin()); priv_split_traits().increment(); //Anti-exception stuff: if an exception is thrown while //moving elements from old_bucket to the target bucket, all moved //elements are moved back to the original one. detail::incremental_rehash_rollback rollback ( this->priv_buckets()[split_idx], old_bucket, priv_split_traits()); for(;i != end; ++i){ const value_type &v = priv_value_from_slist_node(i.pointed_node()); const std::size_t hash_value = this->priv_stored_or_compute_hash(v, store_hash_t()); const size_type new_n = priv_hash_to_bucket(hash_value); siterator last = bucket_type::s_iterator_to (*group_functions_t::get_last_in_group (dcast_bucket_ptr(i.pointed_node()), optimize_multikey_t())); if(new_n == bucket_to_rehash){ before_i = last; } else{ bucket_type &new_b = this->priv_buckets()[new_n]; new_b.splice_after(new_b.before_begin(), old_bucket, before_i, last); } i = before_i; } rollback.release(); priv_erasure_update_cache(); return true; } else{ //Test if the split variable can be changed if(split_idx <= bucket_len/2) return false; const size_type target_bucket_num = split_idx - 1 - bucket_len/2; bucket_type &target_bucket = this->priv_buckets()[target_bucket_num]; bucket_type &source_bucket = this->priv_buckets()[split_idx-1]; target_bucket.splice_after(target_bucket.cbefore_begin(), source_bucket); priv_split_traits().decrement(); priv_insertion_update_cache(target_bucket_num); return true; } } //! Effects: If new_bucket_traits.bucket_count() is not //! this->bucket_count()/2 or this->bucket_count()*2, or //! this->split_bucket() != new_bucket_traits.bucket_count() returns false //! and does nothing. //! //! Otherwise, copy assigns new_bucket_traits to the internal bucket_traits //! and transfers all the objects from old buckets to the new ones. //! //! Complexity: Linear to size(). //! //! Throws: Nothing //! //! Note: this method is only available if incremental option is activated. bool incremental_rehash(const bucket_traits &new_bucket_traits) { //This function is only available for containers with incremental hashing BOOST_STATIC_ASSERT(( incremental && power_2_buckets )); size_type new_bucket_traits_size = new_bucket_traits.bucket_count(); size_type cur_bucket_traits = this->priv_buckets_len(); if(new_bucket_traits_size/2 != cur_bucket_traits && new_bucket_traits_size != cur_bucket_traits/2){ return false; } const size_type split_idx = this->split_count(); if(new_bucket_traits_size/2 == cur_bucket_traits){ //Test if the split variable can be changed if(!(split_idx >= cur_bucket_traits)) return false; } else{ //Test if the split variable can be changed if(!(split_idx <= cur_bucket_traits/2)) return false; } const size_type ini_n = priv_get_cache_bucket_num(); const bucket_ptr old_buckets = this->priv_buckets(); this->priv_real_bucket_traits() = new_bucket_traits; if(new_bucket_traits.bucket_begin() != old_buckets){ for(size_type n = ini_n; n < split_idx; ++n){ bucket_type &new_bucket = new_bucket_traits.bucket_begin()[n]; bucket_type &old_bucket = old_buckets[n]; new_bucket.splice_after(new_bucket.cbefore_begin(), old_bucket); } //Put cache to safe position priv_initialize_cache(); priv_insertion_update_cache(ini_n); } return true; } //! Requires: //! //! Effects: //! //! Complexity: //! //! Throws: size_type split_count() const { //This function is only available if incremental hashing is activated BOOST_STATIC_ASSERT(( incremental && power_2_buckets )); return this->priv_split_traits().get_size(); } //! Effects: Returns the nearest new bucket count optimized for //! the container that is bigger or equal than n. This suggestion can be //! used to create bucket arrays with a size that will usually improve //! container's performance. If such value does not exist, the //! higher possible value is returned. //! //! Complexity: Amortized constant time. //! //! Throws: Nothing. static size_type suggested_upper_bucket_count(size_type n) { const std::size_t *primes = &detail::prime_list_holder<0>::prime_list[0]; const std::size_t *primes_end = primes + detail::prime_list_holder<0>::prime_list_size; std::size_t const* bound = std::lower_bound(primes, primes_end, n); if(bound == primes_end) --bound; return size_type(*bound); } //! Effects: Returns the nearest new bucket count optimized for //! the container that is smaller or equal than n. This suggestion can be //! used to create bucket arrays with a size that will usually improve //! container's performance. If such value does not exist, the //! lowest possible value is returned. //! //! Complexity: Amortized constant time. //! //! Throws: Nothing. static size_type suggested_lower_bucket_count(size_type n) { const std::size_t *primes = &detail::prime_list_holder<0>::prime_list[0]; const std::size_t *primes_end = primes + detail::prime_list_holder<0>::prime_list_size; size_type const* bound = std::upper_bound(primes, primes_end, n); if(bound != primes) --bound; return size_type(*bound); } /// @cond private: std::size_t priv_hash_to_bucket(std::size_t hash_value) const { return priv_hash_to_bucket(hash_value, this->priv_real_bucket_traits().bucket_count(), priv_split_traits().get_size()); } std::size_t priv_hash_to_bucket(std::size_t hash_value, std::size_t bucket_len, std::size_t split) const { std::size_t bucket_number = priv_hash_to_bucket_impl(hash_value, bucket_len, power_2_buckets_t()); if(incremental) if(bucket_number >= split) bucket_number -= bucket_len/2; return bucket_number; } std::size_t priv_hash_to_bucket_impl(std::size_t hash_value, std::size_t bucket_len, detail::false_) const { return hash_value % bucket_len; } std::size_t priv_hash_to_bucket_impl(std::size_t hash_value, std::size_t bucket_len, detail::true_) const { return hash_value & (bucket_len - 1); } const key_equal &priv_equal() const { return static_cast(this->data_.internal_.bucket_hash_equal_.get()); } key_equal &priv_equal() { return static_cast(this->data_.internal_.bucket_hash_equal_.get()); } const value_traits &priv_value_traits() const { return data_; } value_traits &priv_value_traits() { return data_; } value_type &priv_value_from_slist_node(slist_node_ptr n) { return *this->get_real_value_traits().to_value_ptr(dcast_bucket_ptr(n)); } const value_type &priv_value_from_slist_node(slist_node_ptr n) const { return *this->get_real_value_traits().to_value_ptr(dcast_bucket_ptr(n)); } const real_bucket_traits &priv_real_bucket_traits(detail::false_) const { return this->data_.internal_.bucket_hash_equal_.bucket_hash.bucket_plus_size_.bucket_traits_; } const real_bucket_traits &priv_real_bucket_traits(detail::true_) const { return this->data_.internal_.bucket_hash_equal_.bucket_hash.bucket_plus_size_.bucket_traits_.get_bucket_traits(*this); } real_bucket_traits &priv_real_bucket_traits(detail::false_) { return this->data_.internal_.bucket_hash_equal_.bucket_hash.bucket_plus_size_.bucket_traits_; } real_bucket_traits &priv_real_bucket_traits(detail::true_) { return this->data_.internal_.bucket_hash_equal_.bucket_hash.bucket_plus_size_.bucket_traits_.get_bucket_traits(*this); } const real_bucket_traits &priv_real_bucket_traits() const { return this->priv_real_bucket_traits(detail::bool_()); } real_bucket_traits &priv_real_bucket_traits() { return this->priv_real_bucket_traits(detail::bool_()); } const bucket_traits &priv_bucket_traits() const { return this->data_.internal_.bucket_hash_equal_.bucket_hash.bucket_plus_size_.bucket_traits_; } bucket_traits &priv_bucket_traits() { return this->data_.internal_.bucket_hash_equal_.bucket_hash.bucket_plus_size_.bucket_traits_; } const hasher &priv_hasher() const { return static_cast(this->data_.internal_.bucket_hash_equal_.bucket_hash.get()); } hasher &priv_hasher() { return static_cast(this->data_.internal_.bucket_hash_equal_.bucket_hash.get()); } bucket_ptr priv_buckets() const { return this->priv_real_bucket_traits().bucket_begin(); } size_type priv_buckets_len() const { return this->priv_real_bucket_traits().bucket_count(); } static node_ptr uncast(const const_node_ptr & ptr) { return node_ptr(const_cast(boost::intrusive::detail::to_raw_pointer(ptr))); } node &priv_value_to_node(value_type &v) { return *this->get_real_value_traits().to_node_ptr(v); } const node &priv_value_to_node(const value_type &v) const { return *this->get_real_value_traits().to_node_ptr(v); } size_traits &priv_size_traits() { return this->data_.internal_.bucket_hash_equal_.bucket_hash.bucket_plus_size_; } const size_traits &priv_size_traits() const { return this->data_.internal_.bucket_hash_equal_.bucket_hash.bucket_plus_size_; } split_traits &priv_split_traits() { return this->data_.internal_; } const split_traits &priv_split_traits() const { return this->data_.internal_; } template void priv_erase_range_impl (size_type bucket_num, siterator before_first_it, siterator end, Disposer disposer, size_type &num_erased) { const bucket_ptr buckets = priv_buckets(); bucket_type &b = buckets[bucket_num]; if(before_first_it == b.before_begin() && end == b.end()){ priv_erase_range_impl(bucket_num, 1, disposer, num_erased); } else{ num_erased = 0; siterator to_erase(before_first_it); ++to_erase; slist_node_ptr end_ptr = end.pointed_node(); while(to_erase != end){ group_functions_t::erase_from_group(end_ptr, dcast_bucket_ptr(to_erase.pointed_node()), optimize_multikey_t()); to_erase = b.erase_after_and_dispose(before_first_it, make_node_disposer(disposer)); ++num_erased; } this->priv_size_traits().set_size(this->priv_size_traits().get_size()-num_erased); } } template void priv_erase_range_impl (size_type first_bucket_num, size_type num_buckets, Disposer disposer, size_type &num_erased) { //Now fully clear the intermediate buckets const bucket_ptr buckets = priv_buckets(); num_erased = 0; for(size_type i = first_bucket_num; i < (num_buckets + first_bucket_num); ++i){ bucket_type &b = buckets[i]; siterator b_begin(b.before_begin()); siterator nxt(b_begin); ++nxt; siterator end(b.end()); while(nxt != end){ group_functions_t::init_group(dcast_bucket_ptr(nxt.pointed_node()), optimize_multikey_t()); nxt = b.erase_after_and_dispose (b_begin, make_node_disposer(disposer)); this->priv_size_traits().decrement(); ++num_erased; } } } template void priv_erase_range( siterator before_first_it, size_type first_bucket , siterator last_it, size_type last_bucket , Disposer disposer) { size_type num_erased; if (first_bucket == last_bucket){ priv_erase_range_impl(first_bucket, before_first_it, last_it, disposer, num_erased); } else { bucket_type *b = (&this->priv_buckets()[0]); priv_erase_range_impl(first_bucket, before_first_it, b[first_bucket].end(), disposer, num_erased); if(size_type n = (last_bucket - first_bucket - 1)) priv_erase_range_impl(first_bucket + 1, n, disposer, num_erased); priv_erase_range_impl(last_bucket, b[last_bucket].before_begin(), last_it, disposer, num_erased); } } static node_ptr dcast_bucket_ptr(typename slist_impl::node_ptr p) { return pointer_traits::pointer_to(static_cast(*p)); } std::size_t priv_stored_or_compute_hash(const value_type &v, detail::true_) const { return node_traits::get_hash(this->get_real_value_traits().to_node_ptr(v)); } std::size_t priv_stored_or_compute_hash(const value_type &v, detail::false_) const { return priv_hasher()(v); } std::size_t priv_stored_hash(slist_node_ptr n, detail::true_) const { return node_traits::get_hash(dcast_bucket_ptr(n)); } std::size_t priv_stored_hash(slist_node_ptr, detail::false_) const { //This code should never be reached! BOOST_INTRUSIVE_INVARIANT_ASSERT(0); return 0; } static void priv_clear_group_nodes(bucket_type &b, detail::true_) { siterator it(b.begin()), itend(b.end()); while(it != itend){ node_ptr to_erase(dcast_bucket_ptr(it.pointed_node())); ++it; group_algorithms::init(to_erase); } } static void priv_clear_group_nodes(bucket_type &, detail::false_) {} std::size_t priv_get_bucket_num(siterator it) { return priv_get_bucket_num_hash_dispatch(it, store_hash_t()); } std::size_t priv_get_bucket_num_hash_dispatch(siterator it, detail::true_) { return this->priv_hash_to_bucket (this->priv_stored_hash(it.pointed_node(), store_hash_t())); } std::size_t priv_get_bucket_num_hash_dispatch(siterator it, detail::false_) { return priv_get_bucket_num_no_hash_store(it, optimize_multikey_t()); } std::size_t priv_get_bucket_num_no_hash_store(siterator it, detail::true_) { bucket_ptr f(priv_buckets()), l(f + priv_buckets_len() - 1); slist_node_ptr bb = group_functions_t::get_bucket_before_begin ( f->end().pointed_node() , l->end().pointed_node() , dcast_bucket_ptr(it.pointed_node())); //Now get the bucket_impl from the iterator const bucket_type &b = static_cast (bucket_type::slist_type::container_from_end_iterator(bucket_type::s_iterator_to(*bb))); //Now just calculate the index b has in the bucket array return static_cast(&b - &*f); } std::size_t priv_get_bucket_num_no_hash_store(siterator it, detail::false_) { bucket_ptr f(priv_buckets()), l(f + priv_buckets_len() - 1); slist_node_ptr first_ptr(f->cend().pointed_node()) , last_ptr(l->cend().pointed_node()); //The end node is embedded in the singly linked list: //iterate until we reach it. while(!(first_ptr <= it.pointed_node() && it.pointed_node() <= last_ptr)){ ++it; } //Now get the bucket_impl from the iterator const bucket_type &b = static_cast (bucket_type::container_from_end_iterator(it)); //Now just calculate the index b has in the bucket array return static_cast(&b - &*f); } siterator priv_get_previous (bucket_type &b, siterator i) { return priv_get_previous(b, i, optimize_multikey_t()); } siterator priv_get_previous (bucket_type &b, siterator i, detail::true_) { node_ptr elem(dcast_bucket_ptr(i.pointed_node())); node_ptr prev_in_group(group_traits::get_next(elem)); bool first_in_group = node_traits::get_next(prev_in_group) != elem; typename bucket_type::node &n = first_in_group ? *group_functions_t::get_prev_to_first_in_group(b.end().pointed_node(), elem) : *group_traits::get_next(elem) ; return bucket_type::s_iterator_to(n); } siterator priv_get_previous (bucket_type &b, siterator i, detail::false_) { return b.previous(i); } static siterator priv_get_last(bucket_type &b) { return priv_get_last(b, optimize_multikey_t()); } static siterator priv_get_last(bucket_type &b, detail::true_) { //First find the last node of p's group. //This requires checking the first node of the next group or //the bucket node. slist_node_ptr end_ptr(b.end().pointed_node()); node_ptr possible_end(node_traits::get_next( dcast_bucket_ptr(end_ptr))); node_ptr last_node_group(possible_end); while(end_ptr != possible_end){ last_node_group = group_traits::get_next(dcast_bucket_ptr(possible_end)); possible_end = node_traits::get_next(last_node_group); } return bucket_type::s_iterator_to(*last_node_group); } static siterator priv_get_last(bucket_type &b, detail::false_) { return b.previous(b.end()); } /* siterator priv_get_previous_and_next_in_group (siterator i, node_ptr &nxt_in_group) { siterator prev; node_ptr elem(dcast_bucket_ptr(i.pointed_node())); bucket_ptr f(priv_buckets()), l(f + priv_buckets_len() - 1); slist_node_ptr first_end_ptr(f->cend().pointed_node()); slist_node_ptr last_end_ptr (l->cend().pointed_node()); node_ptr nxt(node_traits::get_next(elem)); node_ptr prev_in_group(group_traits::get_next(elem)); bool last_in_group = (first_end_ptr <= nxt && nxt <= last_end_ptr) || (group_traits::get_next(nxt) != elem); bool first_in_group = node_traits::get_next(prev_in_group) != elem; if(first_in_group){ node_ptr start_pos; if(last_in_group){ start_pos = elem; nxt_in_group = node_ptr(); } else{ start_pos = prev_in_group; nxt_in_group = node_traits::get_next(elem); } slist_node_ptr bucket_node; if(store_hash){ bucket_node = this->priv_buckets() [this->priv_hash_to_bucket (this->priv_stored_hash(elem, store_hash_t())) ].before_begin().pointed_node(); } else{ bucket_node = group_functions_t::get_bucket_before_begin (first_end_ptr, last_end_ptr, start_pos); } prev = bucket_type::s_iterator_to (*group_functions_t::get_prev_to_first_in_group(bucket_node, elem)); } else{ if(last_in_group){ nxt_in_group = group_functions_t::get_first_in_group_of_last_in_group(elem); } else{ nxt_in_group = node_traits::get_next(elem); } prev = bucket_type::s_iterator_to(*group_traits::get_next(elem)); } return prev; } */ /* template void priv_erase(const_iterator i, Disposer disposer, detail::true_) { siterator elem(i.slist_it()); node_ptr nxt_in_group; siterator prev = priv_get_previous_and_next_in_group(elem, nxt_in_group); bucket_type::s_erase_after_and_dispose(prev, make_node_disposer(disposer)); if(nxt_in_group) group_algorithms::unlink_after(nxt_in_group); if(safemode_or_autounlink) group_algorithms::init(dcast_bucket_ptr(elem.pointed_node())); } */ /* if(store_hash){ bucket_node = this->priv_buckets() [this->priv_hash_to_bucket (this->priv_stored_hash(elem, store_hash_t())) ].before_begin().pointed_node(); } else{ bucket_node = group_functions_t::get_bucket_before_begin (first_end_ptr, last_end_ptr, start_pos); } */ template void priv_erase(const_iterator i, Disposer disposer, detail::true_) { slist_node_ptr elem(i.slist_it().pointed_node()); slist_node_ptr f_bucket_end, l_bucket_end; if(store_hash){ f_bucket_end = l_bucket_end = (this->priv_buckets() [this->priv_hash_to_bucket (this->priv_stored_hash(elem, store_hash_t())) ]).before_begin().pointed_node(); } else{ f_bucket_end = this->priv_buckets()->cend().pointed_node(); l_bucket_end = f_bucket_end + priv_buckets_len() - 1; } node_ptr nxt_in_group; siterator prev = bucket_type::s_iterator_to (*group_functions_t::get_previous_and_next_in_group ( elem, nxt_in_group, f_bucket_end, l_bucket_end) ); bucket_type::s_erase_after_and_dispose(prev, make_node_disposer(disposer)); if(nxt_in_group) group_algorithms::unlink_after(nxt_in_group); if(safemode_or_autounlink) group_algorithms::init(dcast_bucket_ptr(elem)); } template void priv_erase(const_iterator i, Disposer disposer, detail::false_) { siterator to_erase(i.slist_it()); bucket_type &b = this->priv_buckets()[this->priv_get_bucket_num(to_erase)]; siterator prev(priv_get_previous(b, to_erase)); b.erase_after_and_dispose(prev, make_node_disposer(disposer)); } bucket_ptr priv_invalid_bucket() const { const real_bucket_traits &rbt = this->priv_real_bucket_traits(); return rbt.bucket_begin() + rbt.bucket_count(); } siterator priv_invalid_local_it() const { return priv_invalid_bucket()->end(); } siterator priv_begin() const { return priv_begin(cache_begin_t()); } siterator priv_begin(detail::false_) const { size_type n = 0; size_type buckets_len = this->priv_buckets_len(); for (n = 0; n < buckets_len; ++n){ bucket_type &b = this->priv_buckets()[n]; if(!b.empty()){ return b.begin(); } } return priv_invalid_local_it(); } siterator priv_begin(detail::true_) const { if(this->data_.internal_.bucket_hash_equal_.cached_begin_ == priv_invalid_bucket()){ return priv_invalid_local_it(); } else{ return this->data_.internal_.bucket_hash_equal_.cached_begin_->begin(); } } void priv_initialize_cache() { priv_initialize_cache(cache_begin_t()); } void priv_initialize_cache(detail::true_) { this->data_.internal_.bucket_hash_equal_.cached_begin_ = priv_invalid_bucket(); } void priv_initialize_cache(detail::false_) {} void priv_insertion_update_cache(size_type insertion_bucket) { priv_insertion_update_cache(insertion_bucket, cache_begin_t()); } void priv_insertion_update_cache(size_type insertion_bucket, detail::true_) { bucket_ptr p = priv_buckets() + insertion_bucket; if(p < this->data_.internal_.bucket_hash_equal_.cached_begin_){ this->data_.internal_.bucket_hash_equal_.cached_begin_ = p; } } void priv_insertion_update_cache(size_type, detail::false_) {} void priv_erasure_update_cache(size_type first_bucket, size_type last_bucket) { priv_erasure_update_cache(first_bucket, last_bucket, cache_begin_t()); } void priv_erasure_update_cache(size_type first_bucket_num, size_type last_bucket_num, detail::true_) { //If the last bucket is the end, the cache must be updated //to the last position if all if(priv_get_cache_bucket_num() == first_bucket_num && priv_buckets()[first_bucket_num].empty() ){ priv_set_cache(priv_buckets() + last_bucket_num); priv_erasure_update_cache(); } } void priv_erasure_update_cache(size_type, size_type, detail::false_) {} void priv_erasure_update_cache() { priv_erasure_update_cache(cache_begin_t()); } void priv_erasure_update_cache(detail::true_) { if(constant_time_size && !size()){ priv_initialize_cache(); } else{ size_type current_n = this->data_.internal_.bucket_hash_equal_.cached_begin_ - priv_buckets(); for( const size_type num_buckets = this->priv_buckets_len() ; current_n < num_buckets ; ++current_n, ++this->data_.internal_.bucket_hash_equal_.cached_begin_){ if(!this->data_.internal_.bucket_hash_equal_.cached_begin_->empty()){ return; } } priv_initialize_cache(); } } void priv_erasure_update_cache(detail::false_) {} void priv_swap_cache(detail::true_, hashtable_impl &other) { std::swap( this->data_.internal_.bucket_hash_equal_.cached_begin_ , other.data_.internal_.bucket_hash_equal_.cached_begin_); } void priv_swap_cache(detail::false_, hashtable_impl &) {} bucket_ptr priv_get_cache() { return priv_get_cache(cache_begin_t()); } bucket_ptr priv_get_cache(detail::true_) { return this->data_.internal_.bucket_hash_equal_.cached_begin_; } bucket_ptr priv_get_cache(detail::false_) { return this->priv_buckets(); } void priv_set_cache(const bucket_ptr &p) { this->data_.internal_.bucket_hash_equal_.set_cache(p); } size_type priv_get_cache_bucket_num() { return priv_get_cache_bucket_num(cache_begin_t()); } size_type priv_get_cache_bucket_num(detail::true_) { return this->data_.internal_.bucket_hash_equal_.cached_begin_ - this->priv_buckets(); } size_type priv_get_cache_bucket_num(detail::false_) { return 0u; } void priv_clear_buckets() { this->priv_clear_buckets ( priv_get_cache() , this->priv_buckets_len() - (priv_get_cache() - priv_buckets())); } void priv_initialize_buckets() { this->priv_clear_buckets(priv_buckets(), this->priv_buckets_len()); } void priv_clear_buckets(bucket_ptr buckets_ptr, size_type buckets_len) { for(; buckets_len--; ++buckets_ptr){ if(safemode_or_autounlink){ priv_clear_group_nodes(*buckets_ptr, optimize_multikey_t()); buckets_ptr->clear_and_dispose(detail::init_disposer()); } else{ buckets_ptr->clear(); } } priv_initialize_cache(); } template siterator priv_find ( const KeyType &key, KeyHasher hash_func , KeyValueEqual equal_func, size_type &bucket_number, std::size_t &h, siterator &previt) const { h = hash_func(key); return priv_find_with_hash(key, equal_func, bucket_number, h, previt); } template siterator priv_find_with_hash ( const KeyType &key, KeyValueEqual equal_func, size_type &bucket_number, const std::size_t h, siterator &previt) const { bucket_number = priv_hash_to_bucket(h); bucket_type &b = this->priv_buckets()[bucket_number]; previt = b.before_begin(); if(constant_time_size && this->empty()){ return priv_invalid_local_it(); } siterator it = previt; ++it; while(it != b.end()){ const value_type &v = priv_value_from_slist_node(it.pointed_node()); if(compare_hash){ std::size_t vh = this->priv_stored_or_compute_hash(v, store_hash_t()); if(h == vh && equal_func(key, v)){ return it; } } else if(equal_func(key, v)){ return it; } if(optimize_multikey){ previt = bucket_type::s_iterator_to (*group_functions_t::get_last_in_group (dcast_bucket_ptr(it.pointed_node()), optimize_multikey_t())); it = previt; } else{ previt = it; } ++it; } previt = b.before_begin(); return priv_invalid_local_it(); } iterator priv_insert_equal_with_hash(reference value, std::size_t hash_value) { size_type bucket_num; siterator prev; siterator it = this->priv_find_with_hash (value, this->priv_equal(), bucket_num, hash_value, prev); return priv_insert_equal_find(value, bucket_num, hash_value, it); } iterator priv_insert_equal_find(reference value, size_type bucket_num, std::size_t hash_value, siterator it) { bucket_type &b = this->priv_buckets()[bucket_num]; bool found_equal = it != priv_invalid_local_it(); if(!found_equal){ it = b.before_begin(); } //Now store hash if needed node_ptr n = pointer_traits::pointer_to(priv_value_to_node(value)); node_functions_t::store_hash(n, hash_value, store_hash_t()); //Checks for some modes if(safemode_or_autounlink) BOOST_INTRUSIVE_SAFE_HOOK_DEFAULT_ASSERT(node_algorithms::unique(n)); //Shorcut for optimize_multikey cases if(optimize_multikey){ node_ptr first_in_group = found_equal ? dcast_bucket_ptr(it.pointed_node()) : node_ptr(); group_functions_t::insert_in_group(first_in_group, n, optimize_multikey_t()); } //Update cache and increment size if needed priv_insertion_update_cache(bucket_num); this->priv_size_traits().increment(); //Insert the element in the bucket after it return iterator(b.insert_after(it, *n), this); } template std::pair priv_equal_range ( const KeyType &key , KeyHasher hash_func , KeyValueEqual equal_func , size_type &bucket_number_first , size_type &bucket_number_second , size_type &count) const { std::size_t h; count = 0; siterator prev; //Let's see if the element is present std::pair to_return ( priv_find(key, hash_func, equal_func, bucket_number_first, h, prev) , priv_invalid_local_it()); if(to_return.first == to_return.second){ bucket_number_second = bucket_number_first; return to_return; } //If it's present, find the first that it's not equal in //the same bucket bucket_type &b = this->priv_buckets()[bucket_number_first]; siterator it = to_return.first; if(optimize_multikey){ to_return.second = bucket_type::s_iterator_to (*node_traits::get_next(group_functions_t::get_last_in_group (dcast_bucket_ptr(it.pointed_node()), optimize_multikey_t()))); count = std::distance(it, to_return.second); if(to_return.second != b.end()){ bucket_number_second = bucket_number_first; return to_return; } } else{ ++count; ++it; while(it != b.end()){ const value_type &v = priv_value_from_slist_node(it.pointed_node()); if(compare_hash){ std::size_t hv = this->priv_stored_or_compute_hash(v, store_hash_t()); if(hv != h || !equal_func(key, v)){ to_return.second = it; bucket_number_second = bucket_number_first; return to_return; } } else if(!equal_func(key, v)){ to_return.second = it; bucket_number_second = bucket_number_first; return to_return; } ++it; ++count; } } //If we reached the end, find the first, non-empty bucket for(bucket_number_second = bucket_number_first+1 ; bucket_number_second != this->priv_buckets_len() ; ++bucket_number_second){ bucket_type &b = this->priv_buckets()[bucket_number_second]; if(!b.empty()){ to_return.second = b.begin(); return to_return; } } //Otherwise, return the end node to_return.second = priv_invalid_local_it(); return to_return; } /// @endcond }; /// @cond #if !defined(BOOST_INTRUSIVE_VARIADIC_TEMPLATES) template < class T , bool UniqueKeys , class O1 = none, class O2 = none , class O3 = none, class O4 = none , class O5 = none, class O6 = none , class O7 = none, class O8 = none , class O9 = none, class O10= none > #else template #endif struct make_hashtable_opt { typedef typename pack_options < uset_defaults, #if !defined(BOOST_INTRUSIVE_VARIADIC_TEMPLATES) O1, O2, O3, O4, O5, O6, O7, O8, O9, O10 #else Options... #endif >::type packed_options; //Real value traits must be calculated from options typedef typename detail::get_value_traits ::type value_traits; static const bool external_value_traits = detail::external_value_traits_is_true::value; typedef typename detail::eval_if_c < external_value_traits , detail::eval_value_traits , detail::identity >::type real_value_traits; typedef typename packed_options::bucket_traits specified_bucket_traits; //Real bucket traits must be calculated from options and calculated value_traits typedef typename detail::get_slist_impl ::type >::type slist_impl; typedef typename detail::if_c< detail::is_same < specified_bucket_traits , default_bucket_traits >::value , detail::bucket_traits_impl , specified_bucket_traits >::type real_bucket_traits; typedef detail::usetopt < value_traits , typename packed_options::hash , typename packed_options::equal , typename packed_options::size_type , real_bucket_traits , (std::size_t(UniqueKeys)*detail::hash_bool_flags::unique_keys_pos) | (std::size_t(packed_options::constant_time_size)*detail::hash_bool_flags::constant_time_size_pos) | (std::size_t(packed_options::power_2_buckets)*detail::hash_bool_flags::power_2_buckets_pos) | (std::size_t(packed_options::cache_begin)*detail::hash_bool_flags::cache_begin_pos) | (std::size_t(packed_options::compare_hash)*detail::hash_bool_flags::compare_hash_pos) | (std::size_t(packed_options::incremental)*detail::hash_bool_flags::incremental_pos) > type; }; /// @endcond //! Helper metafunction to define a \c hashtable that yields to the same type when the //! same options (either explicitly or implicitly) are used. #if defined(BOOST_INTRUSIVE_DOXYGEN_INVOKED) || defined(BOOST_INTRUSIVE_VARIADIC_TEMPLATES) template #else template #endif struct make_hashtable { /// @cond typedef hashtable_impl < typename make_hashtable_opt ::type > implementation_defined; /// @endcond typedef implementation_defined type; }; #if !defined(BOOST_INTRUSIVE_DOXYGEN_INVOKED) #if defined(BOOST_INTRUSIVE_VARIADIC_TEMPLATES) template #else template #endif class hashtable : public make_hashtable::type { typedef typename make_hashtable::type Base; BOOST_MOVABLE_BUT_NOT_COPYABLE(hashtable) public: typedef typename Base::value_traits value_traits; typedef typename Base::real_value_traits real_value_traits; typedef typename Base::iterator iterator; typedef typename Base::const_iterator const_iterator; typedef typename Base::bucket_ptr bucket_ptr; typedef typename Base::size_type size_type; typedef typename Base::hasher hasher; typedef typename Base::bucket_traits bucket_traits; typedef typename Base::key_equal key_equal; //Assert if passed value traits are compatible with the type BOOST_STATIC_ASSERT((detail::is_same::value)); hashtable ( const bucket_traits &b_traits , const hasher & hash_func = hasher() , const key_equal &equal_func = key_equal() , const value_traits &v_traits = value_traits()) : Base(b_traits, hash_func, equal_func, v_traits) {} hashtable(BOOST_RV_REF(hashtable) x) : Base(::boost::move(static_cast(x))) {} hashtable& operator=(BOOST_RV_REF(hashtable) x) { this->Base::operator=(::boost::move(static_cast(x))); return *this; } }; #endif } //namespace intrusive } //namespace boost #include #endif //BOOST_INTRUSIVE_HASHTABLE_HPP