///////////////////////////////////////////////////////////////////////////// // // (C) Copyright Olaf Krzikalla 2004-2006. // (C) Copyright Ion Gaztanaga 2006-2014 // // Distributed under the Boost Software License, Version 1.0. // (See accompanying file LICENSE_1_0.txt or copy at // http://www.boost.org/LICENSE_1_0.txt) // // See http://www.boost.org/libs/intrusive for documentation. // ///////////////////////////////////////////////////////////////////////////// #ifndef BOOST_INTRUSIVE_CIRCULAR_LIST_ALGORITHMS_HPP #define BOOST_INTRUSIVE_CIRCULAR_LIST_ALGORITHMS_HPP #if defined(_MSC_VER) # pragma once #endif #include #include #include #include #include namespace boost { namespace intrusive { //! circular_list_algorithms provides basic algorithms to manipulate nodes //! forming a circular doubly linked list. An empty circular list is formed by a node //! whose pointers point to itself. //! //! circular_list_algorithms is configured with a NodeTraits class, which encapsulates the //! information about the node to be manipulated. NodeTraits must support the //! following interface: //! //! Typedefs: //! //! node: The type of the node that forms the circular list //! //! node_ptr: A pointer to a node //! //! const_node_ptr: A pointer to a const node //! //! Static functions: //! //! static node_ptr get_previous(const_node_ptr n); //! //! static void set_previous(node_ptr n, node_ptr prev); //! //! static node_ptr get_next(const_node_ptr n); //! //! static void set_next(node_ptr n, node_ptr next); template class circular_list_algorithms { public: typedef typename NodeTraits::node node; typedef typename NodeTraits::node_ptr node_ptr; typedef typename NodeTraits::const_node_ptr const_node_ptr; typedef NodeTraits node_traits; //! Effects: Constructs an non-used list element, so that //! inited(this_node) == true //! //! Complexity: Constant //! //! Throws: Nothing. static void init(const node_ptr &this_node) { const node_ptr null_node((node_ptr())); NodeTraits::set_next(this_node, null_node); NodeTraits::set_previous(this_node, null_node); } //! Effects: Returns true is "this_node" is in a non-used state //! as if it was initialized by the "init" function. //! //! Complexity: Constant //! //! Throws: Nothing. static bool inited(const const_node_ptr &this_node) { return !NodeTraits::get_next(this_node); } //! Effects: Constructs an empty list, making this_node the only //! node of the circular list: //! NodeTraits::get_next(this_node) == NodeTraits::get_previous(this_node) //! == this_node. //! //! Complexity: Constant //! //! Throws: Nothing. static void init_header(const node_ptr &this_node) { NodeTraits::set_next(this_node, this_node); NodeTraits::set_previous(this_node, this_node); } //! Requires: this_node must be in a circular list or be an empty circular list. //! //! Effects: Returns true is "this_node" is the only node of a circular list: //! return NodeTraits::get_next(this_node) == this_node //! //! Complexity: Constant //! //! Throws: Nothing. static bool unique(const const_node_ptr &this_node) { node_ptr next = NodeTraits::get_next(this_node); return !next || next == this_node; } //! Requires: this_node must be in a circular list or be an empty circular list. //! //! Effects: Returns the number of nodes in a circular list. If the circular list //! is empty, returns 1. //! //! Complexity: Linear //! //! Throws: Nothing. static std::size_t count(const const_node_ptr &this_node) { std::size_t result = 0; const_node_ptr p = this_node; do{ p = NodeTraits::get_next(p); ++result; }while (p != this_node); return result; } //! Requires: this_node must be in a circular list or be an empty circular list. //! //! Effects: Unlinks the node from the circular list. //! //! Complexity: Constant //! //! Throws: Nothing. static node_ptr unlink(const node_ptr &this_node) { node_ptr next(NodeTraits::get_next(this_node)); node_ptr prev(NodeTraits::get_previous(this_node)); NodeTraits::set_next(prev, next); NodeTraits::set_previous(next, prev); return next; } //! Requires: b and e must be nodes of the same circular list or an empty range. //! //! Effects: Unlinks the node [b, e) from the circular list. //! //! Complexity: Constant //! //! Throws: Nothing. static void unlink(const node_ptr &b, const node_ptr &e) { if (b != e) { node_ptr prevb(NodeTraits::get_previous(b)); NodeTraits::set_previous(e, prevb); NodeTraits::set_next(prevb, e); } } //! Requires: nxt_node must be a node of a circular list. //! //! Effects: Links this_node before nxt_node in the circular list. //! //! Complexity: Constant //! //! Throws: Nothing. static void link_before(const node_ptr &nxt_node, const node_ptr &this_node) { node_ptr prev(NodeTraits::get_previous(nxt_node)); NodeTraits::set_previous(this_node, prev); NodeTraits::set_next(this_node, nxt_node); //nxt_node might be an alias for prev->next_ //so use it before NodeTraits::set_next(prev, ...) //is called and the reference changes it's value NodeTraits::set_previous(nxt_node, this_node); NodeTraits::set_next(prev, this_node); } //! Requires: prev_node must be a node of a circular list. //! //! Effects: Links this_node after prev_node in the circular list. //! //! Complexity: Constant //! //! Throws: Nothing. static void link_after(const node_ptr &prev_node, const node_ptr &this_node) { node_ptr next(NodeTraits::get_next(prev_node)); NodeTraits::set_previous(this_node, prev_node); NodeTraits::set_next(this_node, next); //prev_node might be an alias for next->next_ //so use it before update it before NodeTraits::set_previous(next, ...) //is called and the reference changes it's value NodeTraits::set_next(prev_node, this_node); NodeTraits::set_previous(next, this_node); } //! Requires: this_node and other_node must be nodes inserted //! in circular lists or be empty circular lists. //! //! Effects: Swaps the position of the nodes: this_node is inserted in //! other_nodes position in the second circular list and the other_node is inserted //! in this_node's position in the first circular list. //! //! Complexity: Constant //! //! Throws: Nothing. /* static void swap_nodes(const node_ptr &this_node, const node_ptr &other_node) { if (other_node == this_node) return; bool empty1 = unique(this_node); bool empty2 = unique(other_node); node_ptr next_this(NodeTraits::get_next(this_node)); node_ptr prev_this(NodeTraits::get_previous(this_node)); node_ptr next_other(NodeTraits::get_next(other_node)); node_ptr prev_other(NodeTraits::get_previous(other_node)); //Do the swap NodeTraits::set_next(this_node, next_other); NodeTraits::set_next(other_node, next_this); NodeTraits::set_previous(this_node, prev_other); NodeTraits::set_previous(other_node, prev_this); if (empty2){ init(this_node); } else{ NodeTraits::set_next(prev_other, this_node); NodeTraits::set_previous(next_other, this_node); } if (empty1){ init(other_node); } else{ NodeTraits::set_next(prev_this, other_node); NodeTraits::set_previous(next_this, other_node); } } */ //Watanabe version private: static void swap_prev(const node_ptr &this_node, const node_ptr &other_node) { node_ptr temp(NodeTraits::get_previous(this_node)); NodeTraits::set_previous(this_node, NodeTraits::get_previous(other_node)); NodeTraits::set_previous(other_node, temp); } static void swap_next(const node_ptr &this_node, const node_ptr &other_node) { node_ptr temp(NodeTraits::get_next(this_node)); NodeTraits::set_next(this_node, NodeTraits::get_next(other_node)); NodeTraits::set_next(other_node, temp); } public: static void swap_nodes(const node_ptr &this_node, const node_ptr &other_node) { if (other_node == this_node) return; bool this_inited = inited(this_node); bool other_inited = inited(other_node); if(this_inited){ init_header(this_node); } if(other_inited){ init_header(other_node); } node_ptr next_this(NodeTraits::get_next(this_node)); node_ptr prev_this(NodeTraits::get_previous(this_node)); node_ptr next_other(NodeTraits::get_next(other_node)); node_ptr prev_other(NodeTraits::get_previous(other_node)); //these first two swaps must happen before the other two swap_prev(next_this, next_other); swap_next(prev_this, prev_other); swap_next(this_node, other_node); swap_prev(this_node, other_node); if(this_inited){ init(other_node); } if(other_inited){ init(this_node); } } //! Requires: b and e must be nodes of the same circular list or an empty range. //! and p must be a node of a different circular list or may not be an iterator in // [b, e). //! //! Effects: Removes the nodes from [b, e) range from their circular list and inserts //! them before p in p's circular list. //! //! Complexity: Constant //! //! Throws: Nothing. static void transfer(const node_ptr &p, const node_ptr &b, const node_ptr &e) { if (b != e) { node_ptr prev_p(NodeTraits::get_previous(p)); node_ptr prev_b(NodeTraits::get_previous(b)); node_ptr prev_e(NodeTraits::get_previous(e)); NodeTraits::set_next(prev_e, p); NodeTraits::set_previous(p, prev_e); NodeTraits::set_next(prev_b, e); NodeTraits::set_previous(e, prev_b); NodeTraits::set_next(prev_p, b); NodeTraits::set_previous(b, prev_p); } } //! Requires: i must a node of a circular list //! and p must be a node of a different circular list. //! //! Effects: Removes the node i from its circular list and inserts //! it before p in p's circular list. //! If p == i or p == NodeTraits::get_next(i), this function is a null operation. //! //! Complexity: Constant //! //! Throws: Nothing. static void transfer(const node_ptr &p, const node_ptr &i) { node_ptr n(NodeTraits::get_next(i)); if(n != p && i != p){ node_ptr prev_p(NodeTraits::get_previous(p)); node_ptr prev_i(NodeTraits::get_previous(i)); NodeTraits::set_next(prev_p, i); NodeTraits::set_previous(i, prev_p); NodeTraits::set_next(i, p); NodeTraits::set_previous(p, i); NodeTraits::set_previous(n, prev_i); NodeTraits::set_next(prev_i, n); } } //! Effects: Reverses the order of elements in the list. //! //! Throws: Nothing. //! //! Complexity: This function is linear time. static void reverse(const node_ptr &p) { node_ptr f(NodeTraits::get_next(p)); node_ptr i(NodeTraits::get_next(f)), e(p); while(i != e) { node_ptr n = i; i = NodeTraits::get_next(i); transfer(f, n, i); f = n; } } //! Effects: Moves the node p n positions towards the end of the list. //! //! Throws: Nothing. //! //! Complexity: Linear to the number of moved positions. static void move_backwards(const node_ptr &p, std::size_t n) { //Null shift, nothing to do if(!n) return; node_ptr first = NodeTraits::get_next(p); //size() == 0 or 1, nothing to do if(first == NodeTraits::get_previous(p)) return; unlink(p); //Now get the new first node while(n--){ first = NodeTraits::get_next(first); } link_before(first, p); } //! Effects: Moves the node p n positions towards the beginning of the list. //! //! Throws: Nothing. //! //! Complexity: Linear to the number of moved positions. static void move_forward(const node_ptr &p, std::size_t n) { //Null shift, nothing to do if(!n) return; node_ptr last = NodeTraits::get_previous(p); //size() == 0 or 1, nothing to do if(last == NodeTraits::get_next(p)) return; unlink(p); //Now get the new last node while(n--){ last = NodeTraits::get_previous(last); } link_after(last, p); } //! Requires: f and l must be in a circular list. //! //! Effects: Returns the number of nodes in the range [f, l). //! //! Complexity: Linear //! //! Throws: Nothing. static std::size_t distance(const const_node_ptr &f, const const_node_ptr &l) { const_node_ptr i(f); std::size_t result = 0; while(i != l){ i = NodeTraits::get_next(i); ++result; } return result; } struct stable_partition_info { std::size_t num_1st_partition; std::size_t num_2nd_partition; node_ptr beg_2st_partition; }; template static void stable_partition(node_ptr beg, const node_ptr &end, Pred pred, stable_partition_info &info) { node_ptr bcur = node_traits::get_previous(beg); node_ptr cur = beg; node_ptr new_f = end; std::size_t num1 = 0, num2 = 0; while(cur != end){ if(pred(cur)){ ++num1; bcur = cur; cur = node_traits::get_next(cur); } else{ ++num2; node_ptr last_to_remove = bcur; new_f = cur; bcur = cur; cur = node_traits::get_next(cur); BOOST_TRY{ //Main loop while(cur != end){ if(pred(cur)){ //Might throw ++num1; //Process current node node_traits::set_next (last_to_remove, cur); node_traits::set_previous(cur, last_to_remove); last_to_remove = cur; node_ptr nxt = node_traits::get_next(cur); node_traits::set_next (bcur, nxt); node_traits::set_previous(nxt, bcur); cur = nxt; } else{ ++num2; bcur = cur; cur = node_traits::get_next(cur); } } } BOOST_CATCH(...){ node_traits::set_next (last_to_remove, new_f); node_traits::set_previous(new_f, last_to_remove); throw; } BOOST_CATCH_END node_traits::set_next(last_to_remove, new_f); node_traits::set_previous(new_f, last_to_remove); break; } } info.num_1st_partition = num1; info.num_2nd_partition = num2; info.beg_2st_partition = new_f; } }; /// @cond template struct get_algo { typedef circular_list_algorithms type; }; /// @endcond } //namespace intrusive } //namespace boost #include #endif //BOOST_INTRUSIVE_CIRCULAR_LIST_ALGORITHMS_HPP