/* * Copyright Andrey Semashev 2007 - 2014. * Distributed under the Boost Software License, Version 1.0. * (See accompanying file LICENSE_1_0.txt or copy at * http://www.boost.org/LICENSE_1_0.txt) */ /*! * \file async_frontend.hpp * \author Andrey Semashev * \date 14.07.2009 * * The header contains implementation of asynchronous sink frontend. */ #ifndef BOOST_LOG_SINKS_ASYNC_FRONTEND_HPP_INCLUDED_ #define BOOST_LOG_SINKS_ASYNC_FRONTEND_HPP_INCLUDED_ #include #ifdef BOOST_HAS_PRAGMA_ONCE #pragma once #endif #if defined(BOOST_LOG_NO_THREADS) #error Boost.Log: Asynchronous sink frontend is only supported in multithreaded environment #endif #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include namespace boost { BOOST_LOG_OPEN_NAMESPACE namespace sinks { #ifndef BOOST_LOG_DOXYGEN_PASS #define BOOST_LOG_SINK_CTOR_FORWARD_INTERNAL(z, n, types)\ template< BOOST_PP_ENUM_PARAMS(n, typename T) >\ explicit asynchronous_sink(BOOST_PP_ENUM_BINARY_PARAMS(n, T, const& arg)) :\ base_type(true),\ queue_base_type((BOOST_PP_ENUM_PARAMS(n, arg))),\ m_pBackend(boost::make_shared< sink_backend_type >(BOOST_PP_ENUM_PARAMS(n, arg))),\ m_StopRequested(false),\ m_FlushRequested(false)\ {\ if ((BOOST_PP_ENUM_PARAMS(n, arg))[keywords::start_thread | true])\ start_feeding_thread();\ }\ template< BOOST_PP_ENUM_PARAMS(n, typename T) >\ explicit asynchronous_sink(shared_ptr< sink_backend_type > const& backend, BOOST_PP_ENUM_BINARY_PARAMS(n, T, const& arg)) :\ base_type(true),\ queue_base_type((BOOST_PP_ENUM_PARAMS(n, arg))),\ m_pBackend(backend),\ m_StopRequested(false),\ m_FlushRequested(false)\ {\ if ((BOOST_PP_ENUM_PARAMS(n, arg))[keywords::start_thread | true])\ start_feeding_thread();\ } #endif // BOOST_LOG_DOXYGEN_PASS /*! * \brief Asynchronous logging sink frontend * * The frontend starts a separate thread on construction. All logging records are passed * to the backend in this dedicated thread only. */ template< typename SinkBackendT, typename QueueingStrategyT = unbounded_fifo_queue > class asynchronous_sink : public aux::make_sink_frontend_base< SinkBackendT >::type, public QueueingStrategyT { typedef typename aux::make_sink_frontend_base< SinkBackendT >::type base_type; typedef QueueingStrategyT queue_base_type; private: //! Backend synchronization mutex type typedef boost::recursive_mutex backend_mutex_type; //! Frontend synchronization mutex type typedef typename base_type::mutex_type frontend_mutex_type; //! A scope guard that implements thread ID management class scoped_thread_id { private: frontend_mutex_type& m_Mutex; condition_variable_any& m_Cond; thread::id& m_ThreadID; bool volatile& m_StopRequested; public: //! Initializing constructor scoped_thread_id(frontend_mutex_type& mut, condition_variable_any& cond, thread::id& tid, bool volatile& sr) : m_Mutex(mut), m_Cond(cond), m_ThreadID(tid), m_StopRequested(sr) { lock_guard< frontend_mutex_type > lock(m_Mutex); if (m_ThreadID != thread::id()) BOOST_LOG_THROW_DESCR(unexpected_call, "Asynchronous sink frontend already runs a record feeding thread"); m_ThreadID = this_thread::get_id(); } //! Initializing constructor scoped_thread_id(unique_lock< frontend_mutex_type >& l, condition_variable_any& cond, thread::id& tid, bool volatile& sr) : m_Mutex(*l.mutex()), m_Cond(cond), m_ThreadID(tid), m_StopRequested(sr) { unique_lock< frontend_mutex_type > lock(move(l)); if (m_ThreadID != thread::id()) BOOST_LOG_THROW_DESCR(unexpected_call, "Asynchronous sink frontend already runs a record feeding thread"); m_ThreadID = this_thread::get_id(); } //! Destructor ~scoped_thread_id() { try { lock_guard< frontend_mutex_type > lock(m_Mutex); m_StopRequested = false; m_ThreadID = thread::id(); m_Cond.notify_all(); } catch (...) { } } private: scoped_thread_id(scoped_thread_id const&); scoped_thread_id& operator= (scoped_thread_id const&); }; //! A scope guard that resets a flag on destructor class scoped_flag { private: frontend_mutex_type& m_Mutex; condition_variable_any& m_Cond; volatile bool& m_Flag; public: explicit scoped_flag(frontend_mutex_type& mut, condition_variable_any& cond, volatile bool& f) : m_Mutex(mut), m_Cond(cond), m_Flag(f) { } ~scoped_flag() { try { lock_guard< frontend_mutex_type > lock(m_Mutex); m_Flag = false; m_Cond.notify_all(); } catch (...) { } } private: scoped_flag(scoped_flag const&); scoped_flag& operator= (scoped_flag const&); }; public: //! Sink implementation type typedef SinkBackendT sink_backend_type; //! \cond BOOST_STATIC_ASSERT_MSG((has_requirement< typename sink_backend_type::frontend_requirements, synchronized_feeding >::value), "Asynchronous sink frontend is incompatible with the specified backend: thread synchronization requirements are not met"); //! \endcond #ifndef BOOST_LOG_DOXYGEN_PASS //! A pointer type that locks the backend until it's destroyed typedef boost::log::aux::locking_ptr< sink_backend_type, backend_mutex_type > locked_backend_ptr; #else // BOOST_LOG_DOXYGEN_PASS //! A pointer type that locks the backend until it's destroyed typedef implementation_defined locked_backend_ptr; #endif // BOOST_LOG_DOXYGEN_PASS private: //! Synchronization mutex backend_mutex_type m_BackendMutex; //! Pointer to the backend const shared_ptr< sink_backend_type > m_pBackend; //! Dedicated record feeding thread thread m_DedicatedFeedingThread; //! Feeding thread ID thread::id m_FeedingThreadID; //! Condition variable to implement blocking operations condition_variable_any m_BlockCond; //! The flag indicates that the feeding loop has to be stopped volatile bool m_StopRequested; // TODO: make it a real atomic //! The flag indicates that queue flush has been requested volatile bool m_FlushRequested; // TODO: make it a real atomic public: /*! * Default constructor. Constructs the sink backend instance. * Requires the backend to be default-constructible. * * \param start_thread If \c true, the frontend creates a thread to feed * log records to the backend. Otherwise no thread is * started and it is assumed that the user will call * either \c run or \c feed_records himself. */ asynchronous_sink(bool start_thread = true) : base_type(true), m_pBackend(boost::make_shared< sink_backend_type >()), m_StopRequested(false), m_FlushRequested(false) { if (start_thread) start_feeding_thread(); } /*! * Constructor attaches user-constructed backend instance * * \param backend Pointer to the backend instance. * \param start_thread If \c true, the frontend creates a thread to feed * log records to the backend. Otherwise no thread is * started and it is assumed that the user will call * either \c run or \c feed_records himself. * * \pre \a backend is not \c NULL. */ explicit asynchronous_sink(shared_ptr< sink_backend_type > const& backend, bool start_thread = true) : base_type(true), m_pBackend(backend), m_StopRequested(false), m_FlushRequested(false) { if (start_thread) start_feeding_thread(); } // Constructors that pass arbitrary parameters to the backend constructor BOOST_LOG_PARAMETRIZED_CONSTRUCTORS_GEN(BOOST_LOG_SINK_CTOR_FORWARD_INTERNAL, ~) /*! * Destructor. Implicitly stops the dedicated feeding thread, if one is running. */ ~asynchronous_sink() { boost::this_thread::disable_interruption no_interrupts; stop(); } /*! * Locking accessor to the attached backend */ locked_backend_ptr locked_backend() { return locked_backend_ptr(m_pBackend, m_BackendMutex); } /*! * Enqueues the log record to the backend */ void consume(record_view const& rec) { if (m_FlushRequested) { unique_lock< frontend_mutex_type > lock(base_type::frontend_mutex()); // Wait until flush is done while (m_FlushRequested) m_BlockCond.wait(lock); } queue_base_type::enqueue(rec); } /*! * The method attempts to pass logging record to the backend */ bool try_consume(record_view const& rec) { if (!m_FlushRequested) { return queue_base_type::try_enqueue(rec); } else return false; } /*! * The method starts record feeding loop and effectively blocks until either of this happens: * * \li the thread is interrupted due to either standard thread interruption or a call to \c stop * \li an exception is thrown while processing a log record in the backend, and the exception is * not terminated by the exception handler, if one is installed * * \pre The sink frontend must be constructed without spawning a dedicated thread */ void run() { // First check that no other thread is running scoped_thread_id guard(base_type::frontend_mutex(), m_BlockCond, m_FeedingThreadID, m_StopRequested); // Now start the feeding loop while (true) { do_feed_records(); if (!m_StopRequested) { // Block until new record is available record_view rec; if (queue_base_type::dequeue_ready(rec)) base_type::feed_record(rec, m_BackendMutex, *m_pBackend); } else break; } } /*! * The method softly interrupts record feeding loop. This method must be called when the \c run * method execution has to be interrupted. Unlike regular thread interruption, calling * \c stop will not interrupt the record processing in the middle. Instead, the sink frontend * will attempt to finish its business with the record in progress and return afterwards. * This method can be called either if the sink was created with a dedicated thread, * or if the feeding loop was initiated by user. * * \note Returning from this method does not guarantee that there are no records left buffered * in the sink frontend. It is possible that log records keep coming during and after this * method is called. At some point of execution of this method log records stop being processed, * and all records that come after this point are put into the queue. These records will be * processed upon further calls to \c run or \c feed_records. */ void stop() { unique_lock< frontend_mutex_type > lock(base_type::frontend_mutex()); if (m_FeedingThreadID != thread::id() || m_DedicatedFeedingThread.joinable()) { try { m_StopRequested = true; queue_base_type::interrupt_dequeue(); while (m_StopRequested) m_BlockCond.wait(lock); } catch (...) { m_StopRequested = false; throw; } lock.unlock(); m_DedicatedFeedingThread.join(); } } /*! * The method feeds log records that may have been buffered to the backend and returns * * \pre The sink frontend must be constructed without spawning a dedicated thread */ void feed_records() { // First check that no other thread is running scoped_thread_id guard(base_type::frontend_mutex(), m_BlockCond, m_FeedingThreadID, m_StopRequested); // Now start the feeding loop do_feed_records(); } /*! * The method feeds all log records that may have been buffered to the backend and returns. * Unlike \c feed_records, in case of ordering queueing the method also feeds records * that were enqueued during the ordering window, attempting to empty the queue completely. * * \pre The sink frontend must be constructed without spawning a dedicated thread */ void flush() { unique_lock< frontend_mutex_type > lock(base_type::frontend_mutex()); if (m_FeedingThreadID != thread::id() || m_DedicatedFeedingThread.joinable()) { // There is already a thread feeding records, let it do the job m_FlushRequested = true; queue_base_type::interrupt_dequeue(); while (!m_StopRequested && m_FlushRequested) m_BlockCond.wait(lock); // The condition may have been signalled when the feeding thread was finishing. // In that case records may not have been flushed, and we do the flush ourselves. if (m_FeedingThreadID != thread::id()) return; } m_FlushRequested = true; // Flush records ourselves. The guard releases the lock. scoped_thread_id guard(lock, m_BlockCond, m_FeedingThreadID, m_StopRequested); do_feed_records(); } private: #ifndef BOOST_LOG_DOXYGEN_PASS //! The method spawns record feeding thread void start_feeding_thread() { boost::thread(boost::bind(&asynchronous_sink::run, this)).swap(m_DedicatedFeedingThread); } //! The record feeding loop void do_feed_records() { while (!m_StopRequested) { record_view rec; bool dequeued = false; if (!m_FlushRequested) dequeued = queue_base_type::try_dequeue_ready(rec); else dequeued = queue_base_type::try_dequeue(rec); if (dequeued) base_type::feed_record(rec, m_BackendMutex, *m_pBackend); else break; } if (m_FlushRequested) { scoped_flag guard(base_type::frontend_mutex(), m_BlockCond, m_FlushRequested); base_type::flush_backend(m_BackendMutex, *m_pBackend); } } #endif // BOOST_LOG_DOXYGEN_PASS }; #undef BOOST_LOG_SINK_CTOR_FORWARD_INTERNAL } // namespace sinks BOOST_LOG_CLOSE_NAMESPACE // namespace log } // namespace boost #include #endif // BOOST_LOG_SINKS_ASYNC_FRONTEND_HPP_INCLUDED_