// Copyright (c) 2006 Xiaogang Zhang // Use, modification and distribution are subject to the // Boost Software License, Version 1.0. (See accompanying file // LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt) #ifndef BOOST_MATH_BESSEL_K1_HPP #define BOOST_MATH_BESSEL_K1_HPP #ifdef _MSC_VER #pragma once #endif #include #include #include #include // Modified Bessel function of the second kind of order one // minimax rational approximations on intervals, see // Russon and Blair, Chalk River Report AECL-3461, 1969 namespace boost { namespace math { namespace detail{ template T bessel_k1(T x, const Policy&); template struct bessel_k1_initializer { struct init { init() { do_init(); } static void do_init() { bessel_k1(T(1), Policy()); } void force_instantiate()const{} }; static const init initializer; static void force_instantiate() { initializer.force_instantiate(); } }; template const typename bessel_k1_initializer::init bessel_k1_initializer::initializer; template T bessel_k1(T x, const Policy& pol) { bessel_k1_initializer::force_instantiate(); static const T P1[] = { static_cast(BOOST_MATH_BIG_CONSTANT(T, 64, -2.2149374878243304548e+06)), static_cast(BOOST_MATH_BIG_CONSTANT(T, 64, 7.1938920065420586101e+05)), static_cast(BOOST_MATH_BIG_CONSTANT(T, 64, 1.7733324035147015630e+05)), static_cast(BOOST_MATH_BIG_CONSTANT(T, 64, 7.1885382604084798576e+03)), static_cast(BOOST_MATH_BIG_CONSTANT(T, 64, 9.9991373567429309922e+01)), static_cast(BOOST_MATH_BIG_CONSTANT(T, 64, 4.8127070456878442310e-01)) }; static const T Q1[] = { static_cast(BOOST_MATH_BIG_CONSTANT(T, 64, -2.2149374878243304548e+06)), static_cast(BOOST_MATH_BIG_CONSTANT(T, 64, 3.7264298672067697862e+04)), static_cast(BOOST_MATH_BIG_CONSTANT(T, 64, -2.8143915754538725829e+02)), static_cast(BOOST_MATH_BIG_CONSTANT(T, 64, 1.0)) }; static const T P2[] = { static_cast(BOOST_MATH_BIG_CONSTANT(T, 64, 0.0)), static_cast(BOOST_MATH_BIG_CONSTANT(T, 64, -1.3531161492785421328e+06)), static_cast(BOOST_MATH_BIG_CONSTANT(T, 64, -1.4758069205414222471e+05)), static_cast(BOOST_MATH_BIG_CONSTANT(T, 64, -4.5051623763436087023e+03)), static_cast(BOOST_MATH_BIG_CONSTANT(T, 64, -5.3103913335180275253e+01)), static_cast(BOOST_MATH_BIG_CONSTANT(T, 64, -2.2795590826955002390e-01)) }; static const T Q2[] = { static_cast(BOOST_MATH_BIG_CONSTANT(T, 64, -2.7062322985570842656e+06)), static_cast(BOOST_MATH_BIG_CONSTANT(T, 64, 4.3117653211351080007e+04)), static_cast(BOOST_MATH_BIG_CONSTANT(T, 64, -3.0507151578787595807e+02)), static_cast(BOOST_MATH_BIG_CONSTANT(T, 64, 1.0)) }; static const T P3[] = { static_cast(BOOST_MATH_BIG_CONSTANT(T, 64, 2.2196792496874548962e+00)), static_cast(BOOST_MATH_BIG_CONSTANT(T, 64, 4.4137176114230414036e+01)), static_cast(BOOST_MATH_BIG_CONSTANT(T, 64, 3.4122953486801312910e+02)), static_cast(BOOST_MATH_BIG_CONSTANT(T, 64, 1.3319486433183221990e+03)), static_cast(BOOST_MATH_BIG_CONSTANT(T, 64, 2.8590657697910288226e+03)), static_cast(BOOST_MATH_BIG_CONSTANT(T, 64, 3.4540675585544584407e+03)), static_cast(BOOST_MATH_BIG_CONSTANT(T, 64, 2.3123742209168871550e+03)), static_cast(BOOST_MATH_BIG_CONSTANT(T, 64, 8.1094256146537402173e+02)), static_cast(BOOST_MATH_BIG_CONSTANT(T, 64, 1.3182609918569941308e+02)), static_cast(BOOST_MATH_BIG_CONSTANT(T, 64, 7.5584584631176030810e+00)), static_cast(BOOST_MATH_BIG_CONSTANT(T, 64, 6.4257745859173138767e-02)) }; static const T Q3[] = { static_cast(BOOST_MATH_BIG_CONSTANT(T, 64, 1.7710478032601086579e+00)), static_cast(BOOST_MATH_BIG_CONSTANT(T, 64, 3.4552228452758912848e+01)), static_cast(BOOST_MATH_BIG_CONSTANT(T, 64, 2.5951223655579051357e+02)), static_cast(BOOST_MATH_BIG_CONSTANT(T, 64, 9.6929165726802648634e+02)), static_cast(BOOST_MATH_BIG_CONSTANT(T, 64, 1.9448440788918006154e+03)), static_cast(BOOST_MATH_BIG_CONSTANT(T, 64, 2.1181000487171943810e+03)), static_cast(BOOST_MATH_BIG_CONSTANT(T, 64, 1.2082692316002348638e+03)), static_cast(BOOST_MATH_BIG_CONSTANT(T, 64, 3.3031020088765390854e+02)), static_cast(BOOST_MATH_BIG_CONSTANT(T, 64, 3.6001069306861518855e+01)), static_cast(BOOST_MATH_BIG_CONSTANT(T, 64, 1.0)) }; T value, factor, r, r1, r2; BOOST_MATH_STD_USING using namespace boost::math::tools; static const char* function = "boost::math::bessel_k1<%1%>(%1%,%1%)"; if (x < 0) { return policies::raise_domain_error(function, "Got x = %1%, but argument x must be non-negative, complex number result not supported.", x, pol); } if (x == 0) { return policies::raise_overflow_error(function, 0, pol); } if (x <= 1) // x in (0, 1] { T y = x * x; r1 = evaluate_polynomial(P1, y) / evaluate_polynomial(Q1, y); r2 = evaluate_polynomial(P2, y) / evaluate_polynomial(Q2, y); factor = log(x); value = (r1 + factor * r2) / x; } else // x in (1, \infty) { T y = 1 / x; r = evaluate_polynomial(P3, y) / evaluate_polynomial(Q3, y); factor = exp(-x) / sqrt(x); value = factor * r; } return value; } }}} // namespaces #endif // BOOST_MATH_BESSEL_K1_HPP