// Boost.Polygon library transform.hpp header file // Copyright (c) Intel Corporation 2008. // Copyright (c) 2008-2012 Simonson Lucanus. // Copyright (c) 2012-2012 Andrii Sydorchuk. // See http://www.boost.org for updates, documentation, and revision history. // Use, modification and distribution is subject to the Boost Software License, // Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at // http://www.boost.org/LICENSE_1_0.txt) #ifndef BOOST_POLYGON_TRANSFORM_HPP #define BOOST_POLYGON_TRANSFORM_HPP #include "isotropy.hpp" namespace boost { namespace polygon { // Transformation of Coordinate System. // Enum meaning: // Select which direction_2d to change the positive direction of each // axis in the old coordinate system to map it to the new coordiante system. // The first direction_2d listed for each enum is the direction to map the // positive horizontal direction to. // The second direction_2d listed for each enum is the direction to map the // positive vertical direction to. // The zero position bit (LSB) indicates whether the horizontal axis flips // when transformed. // The 1st postion bit indicates whether the vertical axis flips when // transformed. // The 2nd position bit indicates whether the horizontal and vertical axis // swap positions when transformed. // Enum Values: // 000 EAST NORTH // 001 WEST NORTH // 010 EAST SOUTH // 011 WEST SOUTH // 100 NORTH EAST // 101 SOUTH EAST // 110 NORTH WEST // 111 SOUTH WEST class axis_transformation { public: enum ATR { NULL_TRANSFORM = 0, BEGIN_TRANSFORM = 0, EN = 0, EAST_NORTH = 0, WN = 1, WEST_NORTH = 1, FLIP_X = 1, ES = 2, EAST_SOUTH = 2, FLIP_Y = 2, WS = 3, WEST_SOUTH = 3, FLIP_XY = 3, NE = 4, NORTH_EAST = 4, SWAP_XY = 4, SE = 5, SOUTH_EAST = 5, ROTATE_LEFT = 5, NW = 6, NORTH_WEST = 6, ROTATE_RIGHT = 6, SW = 7, SOUTH_WEST = 7, FLIP_SWAP_XY = 7, END_TRANSFORM = 7 }; // Individual axis enum values indicate which axis an implicit individual // axis will be mapped to. // The value of the enum paired with an axis provides the information // about what the axis will transform to. // Three individual axis values, one for each axis, are equivalent to one // ATR enum value, but easier to work with because they are independent. // Converting to and from the individual axis values from the ATR value // is a convenient way to implement tranformation related functionality. // Enum meanings: // PX: map to positive x axis // NX: map to negative x axis // PY: map to positive y axis // NY: map to negative y axis enum INDIVIDUAL_AXIS { PX = 0, NX = 1, PY = 2, NY = 3 }; axis_transformation() : atr_(NULL_TRANSFORM) {} explicit axis_transformation(ATR atr) : atr_(atr) {} axis_transformation(const axis_transformation& atr) : atr_(atr.atr_) {} explicit axis_transformation(const orientation_2d& orient) { const ATR tmp[2] = { NORTH_EAST, // sort x, then y EAST_NORTH // sort y, then x }; atr_ = tmp[orient.to_int()]; } explicit axis_transformation(const direction_2d& dir) { const ATR tmp[4] = { SOUTH_EAST, // sort x, then y NORTH_EAST, // sort x, then y EAST_SOUTH, // sort y, then x EAST_NORTH // sort y, then x }; atr_ = tmp[dir.to_int()]; } // assignment operator axis_transformation& operator=(const axis_transformation& a) { atr_ = a.atr_; return *this; } // assignment operator axis_transformation& operator=(const ATR& atr) { atr_ = atr; return *this; } // equivalence operator bool operator==(const axis_transformation& a) const { return atr_ == a.atr_; } // inequivalence operator bool operator!=(const axis_transformation& a) const { return !(*this == a); } // ordering bool operator<(const axis_transformation& a) const { return atr_ < a.atr_; } // concatenate this with that axis_transformation& operator+=(const axis_transformation& a) { bool abit2 = (a.atr_ & 4) != 0; bool abit1 = (a.atr_ & 2) != 0; bool abit0 = (a.atr_ & 1) != 0; bool bit2 = (atr_ & 4) != 0; bool bit1 = (atr_ & 2) != 0; bool bit0 = (atr_ & 1) != 0; int indexes[2][2] = { { (int)bit2, (int)(!bit2) }, { (int)abit2, (int)(!abit2) } }; int zero_bits[2][2] = { {bit0, bit1}, {abit0, abit1} }; int nbit1 = zero_bits[0][1] ^ zero_bits[1][indexes[0][1]]; int nbit0 = zero_bits[0][0] ^ zero_bits[1][indexes[0][0]]; indexes[0][0] = indexes[1][indexes[0][0]]; indexes[0][1] = indexes[1][indexes[0][1]]; int nbit2 = indexes[0][0] & 1; // swap xy atr_ = (ATR)((nbit2 << 2) + (nbit1 << 1) + nbit0); return *this; } // concatenation operator axis_transformation operator+(const axis_transformation& a) const { axis_transformation retval(*this); return retval+=a; } // populate_axis_array writes the three INDIVIDUAL_AXIS values that the // ATR enum value of 'this' represent into axis_array void populate_axis_array(INDIVIDUAL_AXIS axis_array[]) const { bool bit2 = (atr_ & 4) != 0; bool bit1 = (atr_ & 2) != 0; bool bit0 = (atr_ & 1) != 0; axis_array[1] = (INDIVIDUAL_AXIS)(((int)(!bit2) << 1) + bit1); axis_array[0] = (INDIVIDUAL_AXIS)(((int)(bit2) << 1) + bit0); } // it is recommended that the directions stored in an array // in the caller code for easier isotropic access by orientation value void get_directions(direction_2d& horizontal_dir, direction_2d& vertical_dir) const { bool bit2 = (atr_ & 4) != 0; bool bit1 = (atr_ & 2) != 0; bool bit0 = (atr_ & 1) != 0; vertical_dir = direction_2d((direction_2d_enum)(((int)(!bit2) << 1) + !bit1)); horizontal_dir = direction_2d((direction_2d_enum)(((int)(bit2) << 1) + !bit0)); } // combine_axis_arrays concatenates this_array and that_array overwriting // the result into this_array static void combine_axis_arrays(INDIVIDUAL_AXIS this_array[], const INDIVIDUAL_AXIS that_array[]) { int indexes[2] = { this_array[0] >> 1, this_array[1] >> 1 }; int zero_bits[2][2] = { { this_array[0] & 1, this_array[1] & 1 }, { that_array[0] & 1, that_array[1] & 1 } }; this_array[0] = (INDIVIDUAL_AXIS)((int)this_array[0] | ((int)zero_bits[0][0] ^ (int)zero_bits[1][indexes[0]])); this_array[1] = (INDIVIDUAL_AXIS)((int)this_array[1] | ((int)zero_bits[0][1] ^ (int)zero_bits[1][indexes[1]])); } // write_back_axis_array converts an array of three INDIVIDUAL_AXIS values // to the ATR enum value and sets 'this' to that value void write_back_axis_array(const INDIVIDUAL_AXIS this_array[]) { int bit2 = ((int)this_array[0] & 2) != 0; // swap xy int bit1 = ((int)this_array[1] & 1); int bit0 = ((int)this_array[0] & 1); atr_ = ATR((bit2 << 2) + (bit1 << 1) + bit0); } // behavior is deterministic but undefined in the case where illegal // combinations of directions are passed in. axis_transformation& set_directions(const direction_2d& horizontal_dir, const direction_2d& vertical_dir) { int bit2 = (static_cast(horizontal_dir).to_int()) != 0; int bit1 = !(vertical_dir.to_int() & 1); int bit0 = !(horizontal_dir.to_int() & 1); atr_ = ATR((bit2 << 2) + (bit1 << 1) + bit0); return *this; } // transform the three coordinates by reference template void transform(coordinate_type& x, coordinate_type& y) const { int bit2 = (atr_ & 4) != 0; int bit1 = (atr_ & 2) != 0; int bit0 = (atr_ & 1) != 0; x *= -((bit0 << 1) - 1); y *= -((bit1 << 1) - 1); predicated_swap(bit2 != 0, x, y); } // invert this axis_transformation axis_transformation& invert() { int bit2 = ((atr_ & 4) != 0); int bit1 = ((atr_ & 2) != 0); int bit0 = ((atr_ & 1) != 0); // swap bit 0 and bit 1 if bit2 is 1 predicated_swap(bit2 != 0, bit0, bit1); bit1 = bit1 << 1; atr_ = (ATR)(atr_ & (32+16+8+4)); // mask away bit0 and bit1 atr_ = (ATR)(atr_ | bit0 | bit1); return *this; } // get the inverse axis_transformation of this axis_transformation inverse() const { axis_transformation retval(*this); return retval.invert(); } private: ATR atr_; }; // Scaling object to be used to store the scale factor for each axis. // For use by the transformation object, in that context the scale factor // is the amount that each axis scales by when transformed. template class anisotropic_scale_factor { public: anisotropic_scale_factor() { scale_[0] = 1; scale_[1] = 1; } anisotropic_scale_factor(scale_factor_type xscale, scale_factor_type yscale) { scale_[0] = xscale; scale_[1] = yscale; } // get a component of the anisotropic_scale_factor by orientation scale_factor_type get(orientation_2d orient) const { return scale_[orient.to_int()]; } // set a component of the anisotropic_scale_factor by orientation void set(orientation_2d orient, scale_factor_type value) { scale_[orient.to_int()] = value; } scale_factor_type x() const { return scale_[HORIZONTAL]; } scale_factor_type y() const { return scale_[VERTICAL]; } void x(scale_factor_type value) { scale_[HORIZONTAL] = value; } void y(scale_factor_type value) { scale_[VERTICAL] = value; } // concatination operator (convolve scale factors) anisotropic_scale_factor operator+(const anisotropic_scale_factor& s) const { anisotropic_scale_factor retval(*this); return retval += s; } // concatinate this with that const anisotropic_scale_factor& operator+=( const anisotropic_scale_factor& s) { scale_[0] *= s.scale_[0]; scale_[1] *= s.scale_[1]; return *this; } // transform this scale with an axis_transform anisotropic_scale_factor& transform(axis_transformation atr) { direction_2d dirs[2]; atr.get_directions(dirs[0], dirs[1]); scale_factor_type tmp[2] = {scale_[0], scale_[1]}; for (int i = 0; i < 2; ++i) { scale_[orientation_2d(dirs[i]).to_int()] = tmp[i]; } return *this; } // scale the two coordinates template void scale(coordinate_type& x, coordinate_type& y) const { x = scaling_policy::round( (scale_factor_type)x * get(HORIZONTAL)); y = scaling_policy::round( (scale_factor_type)y * get(HORIZONTAL)); } // invert this scale factor to give the reverse scale factor anisotropic_scale_factor& invert() { x(1/x()); y(1/y()); return *this; } private: scale_factor_type scale_[2]; }; // Transformation object, stores and provides services for transformations. // Consits of axis transformation, scale factor and translation. // The tranlation is the position of the origin of the new coordinate system of // in the old system. Coordinates are scaled before they are transformed. template class transformation { public: transformation() : atr_(), p_(0, 0) {} explicit transformation(axis_transformation atr) : atr_(atr), p_(0, 0) {} explicit transformation(axis_transformation::ATR atr) : atr_(atr), p_(0, 0) {} transformation(const transformation& tr) : atr_(tr.atr_), p_(tr.p_) {} template explicit transformation(const point_type& p) : atr_(), p_(0, 0) { set_translation(p); } template transformation(axis_transformation atr, const point_type& p) : atr_(atr), p_(0, 0) { set_translation(p); } template transformation(axis_transformation atr, const point_type& referencePt, const point_type& destinationPt) : atr_(), p_(0, 0) { transformation tmp(referencePt); transformation rotRef(atr); transformation tmpInverse = tmp.inverse(); point_type decon(referencePt); deconvolve(decon, destinationPt); transformation displacement(decon); tmp += rotRef; tmp += tmpInverse; tmp += displacement; (*this) = tmp; } // equivalence operator bool operator==(const transformation& tr) const { return (atr_ == tr.atr_) && (p_ == tr.p_); } // inequivalence operator bool operator!=(const transformation& tr) const { return !(*this == tr); } // ordering bool operator<(const transformation& tr) const { return (atr_ < tr.atr_) || ((atr_ == tr.atr_) && (p_ < tr.p_)); } // concatenation operator transformation operator+(const transformation& tr) const { transformation retval(*this); return retval+=tr; } // concatenate this with that const transformation& operator+=(const transformation& tr) { coordinate_type x, y; transformation inv = inverse(); inv.transform(x, y); p_.set(HORIZONTAL, p_.get(HORIZONTAL) + x); p_.set(VERTICAL, p_.get(VERTICAL) + y); // concatenate axis transforms atr_ += tr.atr_; return *this; } // get the axis_transformation portion of this axis_transformation get_axis_transformation() const { return atr_; } // set the axis_transformation portion of this void set_axis_transformation(const axis_transformation& atr) { atr_ = atr; } // get the translation template void get_translation(point_type& p) const { assign(p, p_); } // set the translation template void set_translation(const point_type& p) { assign(p_, p); } // apply the 2D portion of this transformation to the two coordinates given void transform(coordinate_type& x, coordinate_type& y) const { y -= p_.get(VERTICAL); x -= p_.get(HORIZONTAL); atr_.transform(x, y); } // invert this transformation transformation& invert() { coordinate_type x = p_.get(HORIZONTAL), y = p_.get(VERTICAL); atr_.transform(x, y); x *= -1; y *= -1; p_ = point_data(x, y); atr_.invert(); return *this; } // get the inverse of this transformation transformation inverse() const { transformation ret_val(*this); return ret_val.invert(); } void get_directions(direction_2d& horizontal_dir, direction_2d& vertical_dir) const { return atr_.get_directions(horizontal_dir, vertical_dir); } private: axis_transformation atr_; point_data p_; }; } // polygon } // boost #endif // BOOST_POLYGON_TRANSFORM_HPP