//////////////////////////////////////////////////////////////////////////////// // // (C) Copyright Ion Gaztanaga 2005-2013. Distributed under the Boost // Software License, Version 1.0. (See accompanying file // LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt) // // See http://www.boost.org/libs/container for documentation. // //////////////////////////////////////////////////////////////////////////////// #ifndef BOOST_CONTAINER_FLAT_TREE_HPP #define BOOST_CONTAINER_FLAT_TREE_HPP #if defined(_MSC_VER) # pragma once #endif #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef BOOST_CONTAINER_VECTOR_ITERATOR_IS_POINTER #include #endif #include #include namespace boost { namespace container { namespace container_detail { template class flat_tree_value_compare : private Compare { typedef Value first_argument_type; typedef Value second_argument_type; typedef bool return_type; public: flat_tree_value_compare() : Compare() {} flat_tree_value_compare(const Compare &pred) : Compare(pred) {} bool operator()(const Value& lhs, const Value& rhs) const { KeyOfValue key_extract; return Compare::operator()(key_extract(lhs), key_extract(rhs)); } const Compare &get_comp() const { return *this; } Compare &get_comp() { return *this; } }; template struct get_flat_tree_iterators { #ifdef BOOST_CONTAINER_VECTOR_ITERATOR_IS_POINTER typedef Pointer iterator; typedef typename boost::intrusive:: pointer_traits::element_type iterator_element_type; typedef typename boost::intrusive:: pointer_traits:: template rebind_pointer::type const_iterator; #else //BOOST_CONTAINER_VECTOR_ITERATOR_IS_POINTER typedef typename boost::container::container_detail:: vec_iterator iterator; typedef typename boost::container::container_detail:: vec_iterator const_iterator; #endif //BOOST_CONTAINER_VECTOR_ITERATOR_IS_POINTER typedef boost::container::container_detail:: reverse_iterator reverse_iterator; typedef boost::container::container_detail:: reverse_iterator const_reverse_iterator; }; template class flat_tree { typedef boost::container::vector vector_t; typedef A allocator_t; public: typedef flat_tree_value_compare value_compare; private: struct Data //Inherit from value_compare to do EBO : public value_compare { BOOST_COPYABLE_AND_MOVABLE(Data) public: Data() : value_compare(), m_vect() {} explicit Data(const Data &d) : value_compare(static_cast(d)), m_vect(d.m_vect) {} Data(BOOST_RV_REF(Data) d) : value_compare(boost::move(static_cast(d))), m_vect(boost::move(d.m_vect)) {} Data(const Data &d, const A &a) : value_compare(static_cast(d)), m_vect(d.m_vect, a) {} Data(BOOST_RV_REF(Data) d, const A &a) : value_compare(boost::move(static_cast(d))), m_vect(boost::move(d.m_vect), a) {} explicit Data(const Compare &comp) : value_compare(comp), m_vect() {} Data(const Compare &comp, const allocator_t &alloc) : value_compare(comp), m_vect(alloc) {} explicit Data(const allocator_t &alloc) : value_compare(), m_vect(alloc) {} Data& operator=(BOOST_COPY_ASSIGN_REF(Data) d) { this->value_compare::operator=(d); m_vect = d.m_vect; return *this; } Data& operator=(BOOST_RV_REF(Data) d) { this->value_compare::operator=(boost::move(static_cast(d))); m_vect = boost::move(d.m_vect); return *this; } void swap(Data &d) { value_compare& mycomp = *this, & othercomp = d; boost::container::swap_dispatch(mycomp, othercomp); this->m_vect.swap(d.m_vect); } vector_t m_vect; }; Data m_data; BOOST_COPYABLE_AND_MOVABLE(flat_tree) public: typedef typename vector_t::value_type value_type; typedef typename vector_t::pointer pointer; typedef typename vector_t::const_pointer const_pointer; typedef typename vector_t::reference reference; typedef typename vector_t::const_reference const_reference; typedef Key key_type; typedef Compare key_compare; typedef typename vector_t::allocator_type allocator_type; typedef typename vector_t::size_type size_type; typedef typename vector_t::difference_type difference_type; typedef typename vector_t::iterator iterator; typedef typename vector_t::const_iterator const_iterator; typedef typename vector_t::reverse_iterator reverse_iterator; typedef typename vector_t::const_reverse_iterator const_reverse_iterator; //!Standard extension typedef allocator_type stored_allocator_type; private: typedef allocator_traits stored_allocator_traits; public: flat_tree() : m_data() { } explicit flat_tree(const Compare& comp) : m_data(comp) { } flat_tree(const Compare& comp, const allocator_type& a) : m_data(comp, a) { } explicit flat_tree(const allocator_type& a) : m_data(a) { } flat_tree(const flat_tree& x) : m_data(x.m_data) { } flat_tree(BOOST_RV_REF(flat_tree) x) : m_data(boost::move(x.m_data)) { } flat_tree(const flat_tree& x, const allocator_type &a) : m_data(x.m_data, a) { } flat_tree(BOOST_RV_REF(flat_tree) x, const allocator_type &a) : m_data(boost::move(x.m_data), a) { } template flat_tree( ordered_range_t, InputIterator first, InputIterator last , const Compare& comp = Compare() , const allocator_type& a = allocator_type()) : m_data(comp, a) { this->m_data.m_vect.insert(this->m_data.m_vect.end(), first, last); } template flat_tree( bool unique_insertion , InputIterator first, InputIterator last , const Compare& comp = Compare() , const allocator_type& a = allocator_type()) : m_data(comp, a) { //Use cend() as hint to achieve linear time for //ordered ranges as required by the standard //for the constructor //Call end() every iteration as reallocation might have invalidated iterators if(unique_insertion){ for ( ; first != last; ++first){ this->insert_unique(this->cend(), *first); } } else{ for ( ; first != last; ++first){ this->insert_equal(this->cend(), *first); } } } ~flat_tree() {} flat_tree& operator=(BOOST_COPY_ASSIGN_REF(flat_tree) x) { m_data = x.m_data; return *this; } flat_tree& operator=(BOOST_RV_REF(flat_tree) mx) { m_data = boost::move(mx.m_data); return *this; } public: // accessors: Compare key_comp() const { return this->m_data.get_comp(); } value_compare value_comp() const { return this->m_data; } allocator_type get_allocator() const { return this->m_data.m_vect.get_allocator(); } const stored_allocator_type &get_stored_allocator() const { return this->m_data.m_vect.get_stored_allocator(); } stored_allocator_type &get_stored_allocator() { return this->m_data.m_vect.get_stored_allocator(); } iterator begin() { return this->m_data.m_vect.begin(); } const_iterator begin() const { return this->cbegin(); } const_iterator cbegin() const { return this->m_data.m_vect.begin(); } iterator end() { return this->m_data.m_vect.end(); } const_iterator end() const { return this->cend(); } const_iterator cend() const { return this->m_data.m_vect.end(); } reverse_iterator rbegin() { return reverse_iterator(this->end()); } const_reverse_iterator rbegin() const { return this->crbegin(); } const_reverse_iterator crbegin() const { return const_reverse_iterator(this->cend()); } reverse_iterator rend() { return reverse_iterator(this->begin()); } const_reverse_iterator rend() const { return this->crend(); } const_reverse_iterator crend() const { return const_reverse_iterator(this->cbegin()); } bool empty() const { return this->m_data.m_vect.empty(); } size_type size() const { return this->m_data.m_vect.size(); } size_type max_size() const { return this->m_data.m_vect.max_size(); } void swap(flat_tree& other) { this->m_data.swap(other.m_data); } public: // insert/erase std::pair insert_unique(const value_type& val) { std::pair ret; insert_commit_data data; ret.second = this->priv_insert_unique_prepare(val, data); ret.first = ret.second ? this->priv_insert_commit(data, val) : iterator(vector_iterator_get_ptr(data.position)); return ret; } std::pair insert_unique(BOOST_RV_REF(value_type) val) { std::pair ret; insert_commit_data data; ret.second = this->priv_insert_unique_prepare(val, data); ret.first = ret.second ? this->priv_insert_commit(data, boost::move(val)) : iterator(vector_iterator_get_ptr(data.position)); return ret; } iterator insert_equal(const value_type& val) { iterator i = this->upper_bound(KeyOfValue()(val)); i = this->m_data.m_vect.insert(i, val); return i; } iterator insert_equal(BOOST_RV_REF(value_type) mval) { iterator i = this->upper_bound(KeyOfValue()(mval)); i = this->m_data.m_vect.insert(i, boost::move(mval)); return i; } iterator insert_unique(const_iterator pos, const value_type& val) { std::pair ret; insert_commit_data data; return this->priv_insert_unique_prepare(pos, val, data) ? this->priv_insert_commit(data, val) : iterator(vector_iterator_get_ptr(data.position)); } iterator insert_unique(const_iterator pos, BOOST_RV_REF(value_type) val) { std::pair ret; insert_commit_data data; return this->priv_insert_unique_prepare(pos, val, data) ? this->priv_insert_commit(data, boost::move(val)) : iterator(vector_iterator_get_ptr(data.position)); } iterator insert_equal(const_iterator pos, const value_type& val) { insert_commit_data data; this->priv_insert_equal_prepare(pos, val, data); return this->priv_insert_commit(data, val); } iterator insert_equal(const_iterator pos, BOOST_RV_REF(value_type) mval) { insert_commit_data data; this->priv_insert_equal_prepare(pos, mval, data); return this->priv_insert_commit(data, boost::move(mval)); } template void insert_unique(InIt first, InIt last) { for ( ; first != last; ++first){ this->insert_unique(*first); } } template void insert_equal(InIt first, InIt last #if !defined(BOOST_CONTAINER_DOXYGEN_INVOKED) , typename container_detail::enable_if_c < container_detail::is_input_iterator::value >::type * = 0 #endif ) { this->priv_insert_equal_loop(first, last); } template void insert_equal(InIt first, InIt last #if !defined(BOOST_CONTAINER_DOXYGEN_INVOKED) , typename container_detail::enable_if_c < !container_detail::is_input_iterator::value >::type * = 0 #endif ) { const size_type len = static_cast(std::distance(first, last)); this->reserve(this->size()+len); this->priv_insert_equal_loop(first, last); } //Ordered template void insert_equal(ordered_range_t, InIt first, InIt last #if !defined(BOOST_CONTAINER_DOXYGEN_INVOKED) , typename container_detail::enable_if_c < container_detail::is_input_iterator::value >::type * = 0 #endif ) { this->priv_insert_equal_loop_ordered(first, last); } template void insert_equal(ordered_range_t, FwdIt first, FwdIt last #if !defined(BOOST_CONTAINER_DOXYGEN_INVOKED) , typename container_detail::enable_if_c < !container_detail::is_input_iterator::value && container_detail::is_forward_iterator::value >::type * = 0 #endif ) { const size_type len = static_cast(std::distance(first, last)); this->reserve(this->size()+len); this->priv_insert_equal_loop_ordered(first, last); } template void insert_equal(ordered_range_t, BidirIt first, BidirIt last #if !defined(BOOST_CONTAINER_DOXYGEN_INVOKED) , typename container_detail::enable_if_c < !container_detail::is_input_iterator::value && !container_detail::is_forward_iterator::value >::type * = 0 #endif ) { this->priv_insert_ordered_range(false, first, last); } template void insert_unique(ordered_unique_range_t, InIt first, InIt last #if !defined(BOOST_CONTAINER_DOXYGEN_INVOKED) , typename container_detail::enable_if_c < container_detail::is_input_iterator::value || container_detail::is_forward_iterator::value >::type * = 0 #endif ) { const_iterator pos(this->cend()); for ( ; first != last; ++first){ pos = this->insert_unique(pos, *first); ++pos; } } template void insert_unique(ordered_unique_range_t, BidirIt first, BidirIt last #if !defined(BOOST_CONTAINER_DOXYGEN_INVOKED) , typename container_detail::enable_if_c < !(container_detail::is_input_iterator::value || container_detail::is_forward_iterator::value) >::type * = 0 #endif ) { this->priv_insert_ordered_range(true, first, last); } #ifdef BOOST_CONTAINER_PERFECT_FORWARDING template std::pair emplace_unique(Args&&... args) { aligned_storage::value> v; value_type &val = *static_cast(static_cast(&v)); stored_allocator_type &a = this->get_stored_allocator(); stored_allocator_traits::construct(a, &val, ::boost::forward(args)... ); value_destructor d(a, val); return this->insert_unique(::boost::move(val)); } template iterator emplace_hint_unique(const_iterator hint, Args&&... args) { aligned_storage::value> v; value_type &val = *static_cast(static_cast(&v)); stored_allocator_type &a = this->get_stored_allocator(); stored_allocator_traits::construct(a, &val, ::boost::forward(args)... ); value_destructor d(a, val); return this->insert_unique(hint, ::boost::move(val)); } template iterator emplace_equal(Args&&... args) { aligned_storage::value> v; value_type &val = *static_cast(static_cast(&v)); stored_allocator_type &a = this->get_stored_allocator(); stored_allocator_traits::construct(a, &val, ::boost::forward(args)... ); value_destructor d(a, val); return this->insert_equal(::boost::move(val)); } template iterator emplace_hint_equal(const_iterator hint, Args&&... args) { aligned_storage::value> v; value_type &val = *static_cast(static_cast(&v)); stored_allocator_type &a = this->get_stored_allocator(); stored_allocator_traits::construct(a, &val, ::boost::forward(args)... ); value_destructor d(a, val); return this->insert_equal(hint, ::boost::move(val)); } #else //#ifdef BOOST_CONTAINER_PERFECT_FORWARDING #define BOOST_PP_LOCAL_MACRO(n) \ BOOST_PP_EXPR_IF(n, template<) BOOST_PP_ENUM_PARAMS(n, class P) BOOST_PP_EXPR_IF(n, >) \ std::pair \ emplace_unique(BOOST_PP_ENUM(n, BOOST_CONTAINER_PP_PARAM_LIST, _)) \ { \ aligned_storage::value> v; \ value_type &val = *static_cast(static_cast(&v)); \ stored_allocator_type &a = this->get_stored_allocator(); \ stored_allocator_traits::construct(a, &val \ BOOST_PP_ENUM_TRAILING(n, BOOST_CONTAINER_PP_PARAM_FORWARD, _) ); \ value_destructor d(a, val); \ return this->insert_unique(::boost::move(val)); \ } \ \ BOOST_PP_EXPR_IF(n, template<) BOOST_PP_ENUM_PARAMS(n, class P) BOOST_PP_EXPR_IF(n, >) \ iterator emplace_hint_unique(const_iterator hint \ BOOST_PP_ENUM_TRAILING(n, BOOST_CONTAINER_PP_PARAM_LIST, _)) \ { \ aligned_storage::value> v; \ value_type &val = *static_cast(static_cast(&v)); \ stored_allocator_type &a = this->get_stored_allocator(); \ stored_allocator_traits::construct(a, &val \ BOOST_PP_ENUM_TRAILING(n, BOOST_CONTAINER_PP_PARAM_FORWARD, _) ); \ value_destructor d(a, val); \ return this->insert_unique(hint, ::boost::move(val)); \ } \ \ BOOST_PP_EXPR_IF(n, template<) BOOST_PP_ENUM_PARAMS(n, class P) BOOST_PP_EXPR_IF(n, >) \ iterator emplace_equal(BOOST_PP_ENUM(n, BOOST_CONTAINER_PP_PARAM_LIST, _)) \ { \ aligned_storage::value> v; \ value_type &val = *static_cast(static_cast(&v)); \ stored_allocator_type &a = this->get_stored_allocator(); \ stored_allocator_traits::construct(a, &val \ BOOST_PP_ENUM_TRAILING(n, BOOST_CONTAINER_PP_PARAM_FORWARD, _) ); \ value_destructor d(a, val); \ return this->insert_equal(::boost::move(val)); \ } \ \ BOOST_PP_EXPR_IF(n, template<) BOOST_PP_ENUM_PARAMS(n, class P) BOOST_PP_EXPR_IF(n, >) \ iterator emplace_hint_equal(const_iterator hint \ BOOST_PP_ENUM_TRAILING(n, BOOST_CONTAINER_PP_PARAM_LIST, _)) \ { \ aligned_storage::value> v; \ value_type &val = *static_cast(static_cast(&v)); \ stored_allocator_type &a = this->get_stored_allocator(); \ stored_allocator_traits::construct(a, &val \ BOOST_PP_ENUM_TRAILING(n, BOOST_CONTAINER_PP_PARAM_FORWARD, _) ); \ value_destructor d(a, val); \ return this->insert_equal(hint, ::boost::move(val)); \ } \ //! #define BOOST_PP_LOCAL_LIMITS (0, BOOST_CONTAINER_MAX_CONSTRUCTOR_PARAMETERS) #include BOOST_PP_LOCAL_ITERATE() #endif //#ifdef BOOST_CONTAINER_PERFECT_FORWARDING iterator erase(const_iterator position) { return this->m_data.m_vect.erase(position); } size_type erase(const key_type& k) { std::pair itp = this->equal_range(k); size_type ret = static_cast(itp.second-itp.first); if (ret){ this->m_data.m_vect.erase(itp.first, itp.second); } return ret; } iterator erase(const_iterator first, const_iterator last) { return this->m_data.m_vect.erase(first, last); } void clear() { this->m_data.m_vect.clear(); } //! Effects: Tries to deallocate the excess of memory created // with previous allocations. The size of the vector is unchanged //! //! Throws: If memory allocation throws, or T's copy constructor throws. //! //! Complexity: Linear to size(). void shrink_to_fit() { this->m_data.m_vect.shrink_to_fit(); } // set operations: iterator find(const key_type& k) { iterator i = this->lower_bound(k); iterator end_it = this->end(); if (i != end_it && this->m_data.get_comp()(k, KeyOfValue()(*i))){ i = end_it; } return i; } const_iterator find(const key_type& k) const { const_iterator i = this->lower_bound(k); const_iterator end_it = this->cend(); if (i != end_it && this->m_data.get_comp()(k, KeyOfValue()(*i))){ i = end_it; } return i; } // set operations: size_type count(const key_type& k) const { std::pair p = this->equal_range(k); size_type n = p.second - p.first; return n; } iterator lower_bound(const key_type& k) { return this->priv_lower_bound(this->begin(), this->end(), k); } const_iterator lower_bound(const key_type& k) const { return this->priv_lower_bound(this->cbegin(), this->cend(), k); } iterator upper_bound(const key_type& k) { return this->priv_upper_bound(this->begin(), this->end(), k); } const_iterator upper_bound(const key_type& k) const { return this->priv_upper_bound(this->cbegin(), this->cend(), k); } std::pair equal_range(const key_type& k) { return this->priv_equal_range(this->begin(), this->end(), k); } std::pair equal_range(const key_type& k) const { return this->priv_equal_range(this->cbegin(), this->cend(), k); } std::pair lower_bound_range(const key_type& k) { return this->priv_lower_bound_range(this->begin(), this->end(), k); } std::pair lower_bound_range(const key_type& k) const { return this->priv_lower_bound_range(this->cbegin(), this->cend(), k); } size_type capacity() const { return this->m_data.m_vect.capacity(); } void reserve(size_type cnt) { this->m_data.m_vect.reserve(cnt); } friend bool operator==(const flat_tree& x, const flat_tree& y) { return x.size() == y.size() && std::equal(x.begin(), x.end(), y.begin()); } friend bool operator<(const flat_tree& x, const flat_tree& y) { return std::lexicographical_compare(x.begin(), x.end(), y.begin(), y.end()); } friend bool operator!=(const flat_tree& x, const flat_tree& y) { return !(x == y); } friend bool operator>(const flat_tree& x, const flat_tree& y) { return y < x; } friend bool operator<=(const flat_tree& x, const flat_tree& y) { return !(y < x); } friend bool operator>=(const flat_tree& x, const flat_tree& y) { return !(x < y); } friend void swap(flat_tree& x, flat_tree& y) { x.swap(y); } private: struct insert_commit_data { const_iterator position; }; // insert/erase void priv_insert_equal_prepare (const_iterator pos, const value_type& val, insert_commit_data &data) { // N1780 // To insert val at pos: // if pos == end || val <= *pos // if pos == begin || val >= *(pos-1) // insert val before pos // else // insert val before upper_bound(val) // else // insert val before lower_bound(val) const value_compare &val_cmp = this->m_data; if(pos == this->cend() || !val_cmp(*pos, val)){ if (pos == this->cbegin() || !val_cmp(val, pos[-1])){ data.position = pos; } else{ data.position = this->priv_upper_bound(this->cbegin(), pos, KeyOfValue()(val)); } } else{ data.position = this->priv_lower_bound(pos, this->cend(), KeyOfValue()(val)); } } bool priv_insert_unique_prepare (const_iterator b, const_iterator e, const value_type& val, insert_commit_data &commit_data) { const value_compare &val_cmp = this->m_data; commit_data.position = this->priv_lower_bound(b, e, KeyOfValue()(val)); return commit_data.position == e || val_cmp(val, *commit_data.position); } bool priv_insert_unique_prepare (const value_type& val, insert_commit_data &commit_data) { return this->priv_insert_unique_prepare(this->cbegin(), this->cend(), val, commit_data); } bool priv_insert_unique_prepare (const_iterator pos, const value_type& val, insert_commit_data &commit_data) { //N1780. Props to Howard Hinnant! //To insert val at pos: //if pos == end || val <= *pos // if pos == begin || val >= *(pos-1) // insert val before pos // else // insert val before upper_bound(val) //else if pos+1 == end || val <= *(pos+1) // insert val after pos //else // insert val before lower_bound(val) const value_compare &val_cmp = this->m_data; const const_iterator cend_it = this->cend(); if(pos == cend_it || val_cmp(val, *pos)){ //Check if val should go before end const const_iterator cbeg = this->cbegin(); commit_data.position = pos; if(pos == cbeg){ //If container is empty then insert it in the beginning return true; } const_iterator prev(pos); --prev; if(val_cmp(*prev, val)){ //If previous element was less, then it should go between prev and pos return true; } else if(!val_cmp(val, *prev)){ //If previous was equal then insertion should fail commit_data.position = prev; return false; } else{ //Previous was bigger so insertion hint was pointless, dispatch to hintless insertion //but reduce the search between beg and prev as prev is bigger than val return this->priv_insert_unique_prepare(cbeg, prev, val, commit_data); } } else{ //The hint is before the insertion position, so insert it //in the remaining range [pos, end) return this->priv_insert_unique_prepare(pos, cend_it, val, commit_data); } } template iterator priv_insert_commit (insert_commit_data &commit_data, BOOST_FWD_REF(Convertible) convertible) { return this->m_data.m_vect.insert ( commit_data.position , boost::forward(convertible)); } template RanIt priv_lower_bound(RanIt first, const RanIt last, const key_type & key) const { const Compare &key_cmp = this->m_data.get_comp(); KeyOfValue key_extract; size_type len = static_cast(last - first); RanIt middle; while (len) { size_type step = len >> 1; middle = first; middle += step; if (key_cmp(key_extract(*middle), key)) { first = ++middle; len -= step + 1; } else{ len = step; } } return first; } template RanIt priv_upper_bound(RanIt first, const RanIt last, const key_type & key) const { const Compare &key_cmp = this->m_data.get_comp(); KeyOfValue key_extract; size_type len = static_cast(last - first); RanIt middle; while (len) { size_type step = len >> 1; middle = first; middle += step; if (key_cmp(key, key_extract(*middle))) { len = step; } else{ first = ++middle; len -= step + 1; } } return first; } template std::pair priv_equal_range(RanIt first, RanIt last, const key_type& key) const { const Compare &key_cmp = this->m_data.get_comp(); KeyOfValue key_extract; size_type len = static_cast(last - first); RanIt middle; while (len) { size_type step = len >> 1; middle = first; middle += step; if (key_cmp(key_extract(*middle), key)){ first = ++middle; len -= step + 1; } else if (key_cmp(key, key_extract(*middle))){ len = step; } else { //Middle is equal to key last = first; last += len; return std::pair ( this->priv_lower_bound(first, middle, key) , this->priv_upper_bound(++middle, last, key)); } } return std::pair(first, first); } template std::pair priv_lower_bound_range(RanIt first, RanIt last, const key_type& k) const { const Compare &key_cmp = this->m_data.get_comp(); KeyOfValue key_extract; RanIt lb(this->priv_lower_bound(first, last, k)), ub(lb); if(lb != last && static_cast(!key_cmp(k, key_extract(*lb)))){ ++ub; } return std::pair(lb, ub); } template void priv_insert_equal_loop(InIt first, InIt last) { for ( ; first != last; ++first){ this->insert_equal(*first); } } template void priv_insert_equal_loop_ordered(InIt first, InIt last) { const_iterator pos(this->cend()); for ( ; first != last; ++first){ //If ordered, then try hint version //to achieve constant-time complexity per insertion pos = this->insert_equal(pos, *first); ++pos; } } template void priv_insert_ordered_range(const bool unique_values, BidirIt first, BidirIt last) { size_type len = static_cast(std::distance(first, last)); //Prereserve all memory so that iterators are not invalidated this->reserve(this->size()+len); //Auxiliary data for insertion positions. const size_type BurstSize = len; const ::boost::movelib::unique_ptr positions = ::boost::movelib::make_unique_definit(BurstSize); const const_iterator b(this->cbegin()); const const_iterator ce(this->cend()); const_iterator pos(b); const value_compare &val_cmp = this->m_data; //Loop in burst sizes bool back_insert = false; while(len && !back_insert){ const size_type burst = len < BurstSize ? len : BurstSize; size_type unique_burst = 0u; size_type checked = 0; for(; checked != burst; ++checked){ //Get the insertion position for each key, use std::iterator_traits::value_type //because it can be different from container::value_type //(e.g. conversion between std::pair -> boost::container::pair const typename std::iterator_traits::value_type & val = *first; pos = const_cast(*this).priv_lower_bound(pos, ce, KeyOfValue()(val)); //Check if already present if (pos != ce){ ++first; --len; positions[checked] = (unique_values && !val_cmp(val, *pos)) ? size_type(-1) : (++unique_burst, static_cast(pos - b)); } else{ //this element and the remaining should be back inserted back_insert = true; break; } } if(unique_burst){ //Insert all in a single step in the precalculated positions this->m_data.m_vect.insert_ordered_at(unique_burst, positions.get() + checked, first); //Next search position updated, iterator still valid because we've preserved the vector pos += unique_burst; } } //The remaining range should be back inserted if(unique_values){ while(len--){ BidirIt next(first); ++next; if(next == last || val_cmp(*first, *next)){ const bool room = this->m_data.m_vect.stable_emplace_back(*first); (void)room; BOOST_ASSERT(room); } first = next; } BOOST_ASSERT(first == last); } else{ BOOST_ASSERT(size_type(std::distance(first, last)) == len); if(len) this->m_data.m_vect.insert(this->m_data.m_vect.cend(), len, first, last); } } }; } //namespace container_detail { } //namespace container { /* //!has_trivial_destructor_after_move<> == true_type //!specialization for optimizations template struct has_trivial_destructor_after_move > { static const bool value = has_trivial_destructor_after_move::value && has_trivial_destructor_after_move::value; }; */ } //namespace boost { #include #endif // BOOST_CONTAINER_FLAT_TREE_HPP