// Boost.Geometry (aka GGL, Generic Geometry Library) // Copyright (c) 2007-2012 Barend Gehrels, Amsterdam, the Netherlands. // Copyright (c) 2008-2012 Bruno Lalande, Paris, France. // Copyright (c) 2009-2012 Mateusz Loskot, London, UK. // Copyright (c) 2014 Adam Wulkiewicz, Lodz, Poland. // This file was modified by Oracle on 2014. // Modifications copyright (c) 2014 Oracle and/or its affiliates. // Contributed and/or modified by Adam Wulkiewicz, on behalf of Oracle // Parts of Boost.Geometry are redesigned from Geodan's Geographic Library // (geolib/GGL), copyright (c) 1995-2010 Geodan, Amsterdam, the Netherlands. // Use, modification and distribution is subject to the Boost Software License, // Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at // http://www.boost.org/LICENSE_1_0.txt) #ifndef BOOST_GEOMETRY_ALGORITHMS_EQUALS_HPP #define BOOST_GEOMETRY_ALGORITHMS_EQUALS_HPP #include #include #include #include #include #include #include #include #include #include #include #include // For trivial checks #include #include #include #include #include #include #include #include #include #include namespace boost { namespace geometry { #ifndef DOXYGEN_NO_DETAIL namespace detail { namespace equals { template < std::size_t Dimension, std::size_t DimensionCount > struct box_box { template static inline bool apply(Box1 const& box1, Box2 const& box2) { if (!geometry::math::equals(get(box1), get(box2)) || !geometry::math::equals(get(box1), get(box2))) { return false; } return box_box::apply(box1, box2); } }; template struct box_box { template static inline bool apply(Box1 const& , Box2 const& ) { return true; } }; struct segment_segment { template static inline bool apply(Segment1 const& segment1, Segment2 const& segment2) { return equals::equals_point_point( indexed_point_view(segment1), indexed_point_view(segment2) ) ? equals::equals_point_point( indexed_point_view(segment1), indexed_point_view(segment2) ) : ( equals::equals_point_point( indexed_point_view(segment1), indexed_point_view(segment2) ) && equals::equals_point_point( indexed_point_view(segment1), indexed_point_view(segment2) ) ); } }; struct area_check { template static inline bool apply(Geometry1 const& geometry1, Geometry2 const& geometry2) { return geometry::math::equals( geometry::area(geometry1), geometry::area(geometry2)); } }; struct length_check { template static inline bool apply(Geometry1 const& geometry1, Geometry2 const& geometry2) { return geometry::math::equals( geometry::length(geometry1), geometry::length(geometry2)); } }; template struct equals_by_collection { template static inline bool apply(Geometry1 const& geometry1, Geometry2 const& geometry2) { if (! TrivialCheck::apply(geometry1, geometry2)) { return false; } typedef typename geometry::select_most_precise < typename select_coordinate_type < Geometry1, Geometry2 >::type, double >::type calculation_type; typedef std::vector > v; v c1, c2; geometry::collect_vectors(c1, geometry1); geometry::collect_vectors(c2, geometry2); if (boost::size(c1) != boost::size(c2)) { return false; } std::sort(c1.begin(), c1.end()); std::sort(c2.begin(), c2.end()); // Just check if these vectors are equal. return std::equal(c1.begin(), c1.end(), c2.begin()); } }; template struct equals_by_relate : detail::relate::relate_base < detail::relate::static_mask_equals_type, Geometry1, Geometry2 > {}; }} // namespace detail::equals #endif // DOXYGEN_NO_DETAIL #ifndef DOXYGEN_NO_DISPATCH namespace dispatch { template < typename Geometry1, typename Geometry2, typename Tag1 = typename tag::type, typename Tag2 = typename tag::type, std::size_t DimensionCount = dimension::type::value, bool Reverse = reverse_dispatch::type::value > struct equals: not_implemented {}; // If reversal is needed, perform it template < typename Geometry1, typename Geometry2, typename Tag1, typename Tag2, std::size_t DimensionCount > struct equals : equals { static inline bool apply(Geometry1 const& g1, Geometry2 const& g2) { return equals < Geometry2, Geometry1, Tag2, Tag1, DimensionCount, false >::apply(g2, g1); } }; template struct equals : geometry::detail::not_ < P1, P2, detail::disjoint::point_point > {}; template struct equals : detail::equals::box_box<0, DimensionCount> {}; template struct equals : detail::equals::equals_by_collection {}; template struct equals : detail::equals::equals_by_collection {}; template struct equals : detail::equals::equals_by_collection {}; template struct equals : detail::equals::equals_by_collection {}; template struct equals : detail::equals::equals_by_collection {}; template struct equals : detail::equals::segment_segment {}; template struct equals //: detail::equals::equals_by_collection : detail::equals::equals_by_relate {}; template struct equals : detail::equals::equals_by_relate {}; template struct equals : detail::equals::equals_by_relate {}; template struct equals < MultiPolygon1, MultiPolygon2, multi_polygon_tag, multi_polygon_tag, 2, Reverse > : detail::equals::equals_by_collection {}; template struct equals < Polygon, MultiPolygon, polygon_tag, multi_polygon_tag, 2, Reverse > : detail::equals::equals_by_collection {}; } // namespace dispatch #endif // DOXYGEN_NO_DISPATCH namespace resolve_variant { template struct equals { static inline bool apply(Geometry1 const& geometry1, Geometry2 const& geometry2) { concept::check_concepts_and_equal_dimensions < Geometry1 const, Geometry2 const >(); return dispatch::equals ::apply(geometry1, geometry2); } }; template struct equals, Geometry2> { struct visitor: static_visitor { Geometry2 const& m_geometry2; visitor(Geometry2 const& geometry2) : m_geometry2(geometry2) {} template inline bool operator()(Geometry1 const& geometry1) const { return equals ::apply(geometry1, m_geometry2); } }; static inline bool apply( boost::variant const& geometry1, Geometry2 const& geometry2 ) { return apply_visitor(visitor(geometry2), geometry1); } }; template struct equals > { struct visitor: static_visitor { Geometry1 const& m_geometry1; visitor(Geometry1 const& geometry1) : m_geometry1(geometry1) {} template inline bool operator()(Geometry2 const& geometry2) const { return equals ::apply(m_geometry1, geometry2); } }; static inline bool apply( Geometry1 const& geometry1, boost::variant const& geometry2 ) { return apply_visitor(visitor(geometry1), geometry2); } }; template < BOOST_VARIANT_ENUM_PARAMS(typename T1), BOOST_VARIANT_ENUM_PARAMS(typename T2) > struct equals< boost::variant, boost::variant > { struct visitor: static_visitor { template inline bool operator()(Geometry1 const& geometry1, Geometry2 const& geometry2) const { return equals ::apply(geometry1, geometry2); } }; static inline bool apply( boost::variant const& geometry1, boost::variant const& geometry2 ) { return apply_visitor(visitor(), geometry1, geometry2); } }; } // namespace resolve_variant /*! \brief \brief_check{are spatially equal} \details \details_check12{equals, is spatially equal}. Spatially equal means that the same point set is included. A box can therefore be spatially equal to a ring or a polygon, or a linestring can be spatially equal to a multi-linestring or a segment. This only works theoretically, not all combinations are implemented yet. \ingroup equals \tparam Geometry1 \tparam_geometry \tparam Geometry2 \tparam_geometry \param geometry1 \param_geometry \param geometry2 \param_geometry \return \return_check2{are spatially equal} \qbk{[include reference/algorithms/equals.qbk]} */ template inline bool equals(Geometry1 const& geometry1, Geometry2 const& geometry2) { return resolve_variant::equals ::apply(geometry1, geometry2); } }} // namespace boost::geometry #endif // BOOST_GEOMETRY_ALGORITHMS_EQUALS_HPP