// Boost.Geometry (aka GGL, Generic Geometry Library) // Copyright (c) 2007-2012 Barend Gehrels, Amsterdam, the Netherlands. // Copyright (c) 2013 Adam Wulkiewicz, Lodz, Poland. // Use, modification and distribution is subject to the Boost Software License, // Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at // http://www.boost.org/LICENSE_1_0.txt) #ifndef BOOST_GEOMETRY_STRATEGIES_CARTESIAN_INTERSECTION_HPP #define BOOST_GEOMETRY_STRATEGIES_CARTESIAN_INTERSECTION_HPP #include #include #include #include #include #include #include #include #include #include #include // Temporary / will be Strategy as template parameter #include #include #include #include #include #include #if defined(BOOST_GEOMETRY_DEBUG_ROBUSTNESS) # include #endif namespace boost { namespace geometry { namespace strategy { namespace intersection { /*! \see http://mathworld.wolfram.com/Line-LineIntersection.html */ template struct relate_cartesian_segments { typedef typename Policy::return_type return_type; template static inline void cramers_rule(D const& dx_a, D const& dy_a, D const& dx_b, D const& dy_b, W const& wx, W const& wy, // out: ResultType& d, ResultType& da) { // Cramers rule d = geometry::detail::determinant(dx_a, dy_a, dx_b, dy_b); da = geometry::detail::determinant(dx_b, dy_b, wx, wy); // Ratio is da/d , collinear if d == 0, intersecting if 0 <= r <= 1 // IntersectionPoint = (x1 + r * dx_a, y1 + r * dy_a) } // Relate segments a and b template static inline return_type apply(Segment1 const& a, Segment2 const& b, RobustPolicy const& robust_policy) { // type them all as in Segment1 - TODO reconsider this, most precise? typedef typename geometry::point_type::type point_type; typedef typename geometry::robust_point_type < point_type, RobustPolicy >::type robust_point_type; point_type a0, a1, b0, b1; robust_point_type a0_rob, a1_rob, b0_rob, b1_rob; detail::assign_point_from_index<0>(a, a0); detail::assign_point_from_index<1>(a, a1); detail::assign_point_from_index<0>(b, b0); detail::assign_point_from_index<1>(b, b1); geometry::recalculate(a0_rob, a0, robust_policy); geometry::recalculate(a1_rob, a1, robust_policy); geometry::recalculate(b0_rob, b0, robust_policy); geometry::recalculate(b1_rob, b1, robust_policy); return apply(a, b, robust_policy, a0_rob, a1_rob, b0_rob, b1_rob); } // The main entry-routine, calculating intersections of segments a / b template static inline return_type apply(Segment1 const& a, Segment2 const& b, RobustPolicy const& robust_policy, RobustPoint const& robust_a1, RobustPoint const& robust_a2, RobustPoint const& robust_b1, RobustPoint const& robust_b2) { BOOST_CONCEPT_ASSERT( (concept::ConstSegment) ); BOOST_CONCEPT_ASSERT( (concept::ConstSegment) ); boost::ignore_unused_variable_warning(robust_policy); typedef typename select_calculation_type ::type coordinate_type; using geometry::detail::equals::equals_point_point; bool const a_is_point = equals_point_point(robust_a1, robust_a2); bool const b_is_point = equals_point_point(robust_b1, robust_b2); typedef side::side_by_triangle side; if(a_is_point && b_is_point) { return equals_point_point(robust_a1, robust_b2) ? Policy::degenerate(a, true) : Policy::disjoint() ; } side_info sides; sides.set<0>(side::apply(robust_b1, robust_b2, robust_a1), side::apply(robust_b1, robust_b2, robust_a2)); sides.set<1>(side::apply(robust_a1, robust_a2, robust_b1), side::apply(robust_a1, robust_a2, robust_b2)); bool collinear = sides.collinear(); if (sides.same<0>() || sides.same<1>()) { // Both points are at same side of other segment, we can leave return Policy::disjoint(); } typedef typename select_most_precise < coordinate_type, double >::type promoted_type; typedef typename geometry::coordinate_type < RobustPoint >::type robust_coordinate_type; typedef typename segment_ratio_type < typename geometry::point_type::type, // TODO: most precise point? RobustPolicy >::type ratio_type; segment_intersection_info < coordinate_type, promoted_type, ratio_type > sinfo; sinfo.dx_a = get<1, 0>(a) - get<0, 0>(a); // distance in x-dir sinfo.dx_b = get<1, 0>(b) - get<0, 0>(b); sinfo.dy_a = get<1, 1>(a) - get<0, 1>(a); // distance in y-dir sinfo.dy_b = get<1, 1>(b) - get<0, 1>(b); robust_coordinate_type const robust_dx_a = get<0>(robust_a2) - get<0>(robust_a1); robust_coordinate_type const robust_dx_b = get<0>(robust_b2) - get<0>(robust_b1); robust_coordinate_type const robust_dy_a = get<1>(robust_a2) - get<1>(robust_a1); robust_coordinate_type const robust_dy_b = get<1>(robust_b2) - get<1>(robust_b1); // r: ratio 0-1 where intersection divides A/B // (only calculated for non-collinear segments) if (! collinear) { robust_coordinate_type robust_da0, robust_da; robust_coordinate_type robust_db0, robust_db; cramers_rule(robust_dx_a, robust_dy_a, robust_dx_b, robust_dy_b, get<0>(robust_a1) - get<0>(robust_b1), get<1>(robust_a1) - get<1>(robust_b1), robust_da0, robust_da); cramers_rule(robust_dx_b, robust_dy_b, robust_dx_a, robust_dy_a, get<0>(robust_b1) - get<0>(robust_a1), get<1>(robust_b1) - get<1>(robust_a1), robust_db0, robust_db); if (robust_da0 == 0) { // If this is the case, no rescaling is done for FP precision. // We set it to collinear, but it indicates a robustness issue. sides.set<0>(0,0); sides.set<1>(0,0); collinear = true; } else { sinfo.robust_ra.assign(robust_da, robust_da0); sinfo.robust_rb.assign(robust_db, robust_db0); } } if (collinear) { bool const collinear_use_first = geometry::math::abs(robust_dx_a) + geometry::math::abs(robust_dx_b) >= geometry::math::abs(robust_dy_a) + geometry::math::abs(robust_dy_b); // Degenerate cases: segments of single point, lying on other segment, are not disjoint // This situation is collinear too if (collinear_use_first) { return relate_collinear<0, ratio_type>(a, b, robust_a1, robust_a2, robust_b1, robust_b2, a_is_point, b_is_point); } else { // Y direction contains larger segments (maybe dx is zero) return relate_collinear<1, ratio_type>(a, b, robust_a1, robust_a2, robust_b1, robust_b2, a_is_point, b_is_point); } } return Policy::segments_crosses(sides, sinfo, a, b); } private: template < std::size_t Dimension, typename RatioType, typename Segment1, typename Segment2, typename RobustPoint > static inline return_type relate_collinear(Segment1 const& a, Segment2 const& b, RobustPoint const& robust_a1, RobustPoint const& robust_a2, RobustPoint const& robust_b1, RobustPoint const& robust_b2, bool a_is_point, bool b_is_point) { if (a_is_point) { return relate_one_degenerate(a, get(robust_a1), get(robust_b1), get(robust_b2), true); } if (b_is_point) { return relate_one_degenerate(b, get(robust_b1), get(robust_a1), get(robust_a2), false); } return relate_collinear(a, b, get(robust_a1), get(robust_a2), get(robust_b1), get(robust_b2)); } /// Relate segments known collinear template < typename RatioType, typename Segment1, typename Segment2, typename RobustType > static inline return_type relate_collinear(Segment1 const& a , Segment2 const& b , RobustType oa_1, RobustType oa_2 , RobustType ob_1, RobustType ob_2 ) { // Calculate the ratios where a starts in b, b starts in a // a1--------->a2 (2..7) // b1----->b2 (5..8) // length_a: 7-2=5 // length_b: 8-5=3 // b1 is located w.r.t. a at ratio: (5-2)/5=3/5 (on a) // b2 is located w.r.t. a at ratio: (8-2)/5=6/5 (right of a) // a1 is located w.r.t. b at ratio: (2-5)/3=-3/3 (left of b) // a2 is located w.r.t. b at ratio: (7-5)/3=2/3 (on b) // A arrives (a2 on b), B departs (b1 on a) // If both are reversed: // a2<---------a1 (7..2) // b2<-----b1 (8..5) // length_a: 2-7=-5 // length_b: 5-8=-3 // b1 is located w.r.t. a at ratio: (8-7)/-5=-1/5 (before a starts) // b2 is located w.r.t. a at ratio: (5-7)/-5=2/5 (on a) // a1 is located w.r.t. b at ratio: (7-8)/-3=1/3 (on b) // a2 is located w.r.t. b at ratio: (2-8)/-3=6/3 (after b ends) // If both one is reversed: // a1--------->a2 (2..7) // b2<-----b1 (8..5) // length_a: 7-2=+5 // length_b: 5-8=-3 // b1 is located w.r.t. a at ratio: (8-2)/5=6/5 (after a ends) // b2 is located w.r.t. a at ratio: (5-2)/5=3/5 (on a) // a1 is located w.r.t. b at ratio: (2-8)/-3=6/3 (after b ends) // a2 is located w.r.t. b at ratio: (7-8)/-3=1/3 (on b) RobustType const length_a = oa_2 - oa_1; // no abs, see above RobustType const length_b = ob_2 - ob_1; RatioType const ra_from(oa_1 - ob_1, length_b); RatioType const ra_to(oa_2 - ob_1, length_b); RatioType const rb_from(ob_1 - oa_1, length_a); RatioType const rb_to(ob_2 - oa_1, length_a); if ((ra_from.left() && ra_to.left()) || (ra_from.right() && ra_to.right())) { return Policy::disjoint(); } return Policy::segments_collinear(a, b, ra_from, ra_to, rb_from, rb_to); } /// Relate segments where one is degenerate template < typename RatioType, typename DegenerateSegment, typename RobustType > static inline return_type relate_one_degenerate( DegenerateSegment const& degenerate_segment , RobustType d , RobustType s1, RobustType s2 , bool a_degenerate ) { // Calculate the ratios where ds starts in s // a1--------->a2 (2..6) // b1/b2 (4..4) // Ratio: (4-2)/(6-2) RatioType const ratio(d - s1, s2 - s1); return Policy::one_degenerate(degenerate_segment, ratio, a_degenerate); } }; }} // namespace strategy::intersection }} // namespace boost::geometry #endif // BOOST_GEOMETRY_STRATEGIES_CARTESIAN_INTERSECTION_HPP