// Boost.Geometry (aka GGL, Generic Geometry Library) // Copyright (c) 2008-2014 Bruno Lalande, Paris, France. // Copyright (c) 2008-2014 Barend Gehrels, Amsterdam, the Netherlands. // Copyright (c) 2009-2014 Mateusz Loskot, London, UK. // This file was modified by Oracle on 2014. // Modifications copyright (c) 2014, Oracle and/or its affiliates. // Contributed and/or modified by Menelaos Karavelas, on behalf of Oracle // Contributed and/or modified by Adam Wulkiewicz, on behalf of Oracle // Parts of Boost.Geometry are redesigned from Geodan's Geographic Library // (geolib/GGL), copyright (c) 1995-2010 Geodan, Amsterdam, the Netherlands. // Use, modification and distribution is subject to the Boost Software License, // Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at // http://www.boost.org/LICENSE_1_0.txt) #ifndef BOOST_GEOMETRY_STRATEGIES_CARTESIAN_DISTANCE_PROJECTED_POINT_AX_HPP #define BOOST_GEOMETRY_STRATEGIES_CARTESIAN_DISTANCE_PROJECTED_POINT_AX_HPP #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include // Helper geometry (projected point on line) #include namespace boost { namespace geometry { namespace strategy { namespace distance { #ifndef DOXYGEN_NO_DETAIL namespace detail { template struct projected_point_ax_result { typedef T value_type; projected_point_ax_result(T const& c = T(0)) : atd(c), xtd(c) {} projected_point_ax_result(T const& a, T const& x) : atd(a), xtd(x) {} friend inline bool operator<(projected_point_ax_result const& left, projected_point_ax_result const& right) { return left.xtd < right.xtd || left.atd < right.atd; } T atd, xtd; }; // This less-comparator may be used as a parameter of detail::douglas_peucker. // In this simplify strategy distances are compared in 2 places // 1. to choose the furthest candidate (md < dist) // 2. to check if the candidate is further than max_distance (max_distance < md) template class projected_point_ax_less { public: projected_point_ax_less(Distance const& max_distance) : m_max_distance(max_distance) {} inline bool operator()(Distance const& left, Distance const& right) const { //return left.xtd < right.xtd && right.atd < m_max_distance.atd; typedef typename Distance::value_type value_type; value_type const lx = left.xtd > m_max_distance.xtd ? left.xtd - m_max_distance.xtd : 0; value_type const rx = right.xtd > m_max_distance.xtd ? right.xtd - m_max_distance.xtd : 0; value_type const la = left.atd > m_max_distance.atd ? left.atd - m_max_distance.atd : 0; value_type const ra = right.atd > m_max_distance.atd ? right.atd - m_max_distance.atd : 0; value_type const l = (std::max)(lx, la); value_type const r = (std::max)(rx, ra); return l < r; } private: Distance const& m_max_distance; }; // This strategy returns 2-component Point/Segment distance. // The ATD (along track distance) is parallel to the Segment // and is a distance between Point projected into a line defined by a Segment and the nearest Segment's endpoint. // If the projected Point intersects the Segment the ATD is equal to 0. // The XTD (cross track distance) is perpendicular to the Segment // and is a distance between input Point and its projection. // If the Segment has length equal to 0, ATD and XTD has value equal // to the distance between the input Point and one of the Segment's endpoints. // // p3 p4 // ^ 7 // | / // p1<-----e========e----->p2 // // p1: atd=D, xtd=0 // p2: atd=D, xtd=0 // p3: atd=0, xtd=D // p4: atd=D/2, xtd=D template < typename CalculationType = void, typename Strategy = pythagoras > class projected_point_ax { public : template struct calculation_type : public projected_point ::template calculation_type {}; template struct result_type { typedef projected_point_ax_result < typename calculation_type::type > type; }; public : template inline typename result_type::type apply(Point const& p, PointOfSegment const& p1, PointOfSegment const& p2) const { assert_dimension_equal(); typedef typename calculation_type::type calculation_type; // A projected point of points in Integer coordinates must be able to be // represented in FP. typedef model::point < calculation_type, dimension::value, typename coordinate_system::type > fp_point_type; // For convenience typedef fp_point_type fp_vector_type; /* Algorithm [p: (px,py), p1: (x1,y1), p2: (x2,y2)] VECTOR v(x2 - x1, y2 - y1) VECTOR w(px - x1, py - y1) c1 = w . v c2 = v . v b = c1 / c2 RETURN POINT(x1 + b * vx, y1 + b * vy) */ // v is multiplied below with a (possibly) FP-value, so should be in FP // For consistency we define w also in FP fp_vector_type v, w, projected; geometry::convert(p2, v); geometry::convert(p, w); geometry::convert(p1, projected); subtract_point(v, projected); subtract_point(w, projected); Strategy strategy; boost::ignore_unused_variable_warning(strategy); typename result_type::type result; calculation_type const zero = calculation_type(); calculation_type const c2 = dot_product(v, v); if ( math::equals(c2, zero) ) { result.xtd = strategy.apply(p, projected); // assume that the 0-length segment is perpendicular to the Pt->ProjPt vector result.atd = 0; return result; } calculation_type const c1 = dot_product(w, v); calculation_type const b = c1 / c2; multiply_value(v, b); add_point(projected, v); result.xtd = strategy.apply(p, projected); if (c1 <= zero) { result.atd = strategy.apply(p1, projected); } else if (c2 <= c1) { result.atd = strategy.apply(p2, projected); } else { result.atd = 0; } return result; } }; } // namespace detail #endif // DOXYGEN_NO_DETAIL #ifndef DOXYGEN_NO_STRATEGY_SPECIALIZATIONS namespace services { template struct tag > { typedef strategy_tag_distance_point_segment type; }; template struct return_type, P, PS> { typedef typename detail::projected_point_ax ::template result_type::type type; }; template struct comparable_type > { // Define a projected_point strategy with its underlying point-point-strategy // being comparable typedef detail::projected_point_ax < CalculationType, typename comparable_type::type > type; }; template struct get_comparable > { typedef typename comparable_type < detail::projected_point_ax >::type comparable_type; public : static inline comparable_type apply(detail::projected_point_ax const& ) { return comparable_type(); } }; template struct result_from_distance, P, PS> { private : typedef typename return_type, P, PS>::type return_type; public : template static inline return_type apply(detail::projected_point_ax const& , T const& value) { Strategy s; return_type ret; ret.atd = result_from_distance::apply(s, value.atd); ret.xtd = result_from_distance::apply(s, value.xtd); return ret; } }; } // namespace services #endif // DOXYGEN_NO_STRATEGY_SPECIALIZATIONS }} // namespace strategy::distance }} // namespace boost::geometry #endif // BOOST_GEOMETRY_STRATEGIES_CARTESIAN_DISTANCE_PROJECTED_POINT_AX_HPP