// Boost.Geometry (aka GGL, Generic Geometry Library) // Copyright (c) 2007-2012 Barend Gehrels, Amsterdam, the Netherlands. // Use, modification and distribution is subject to the Boost Software License, // Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at // http://www.boost.org/LICENSE_1_0.txt) #ifndef BOOST_GEOMETRY_STRATEGIES_SPHERICAL_DISTANCE_HAVERSINE_HPP #define BOOST_GEOMETRY_STRATEGIES_SPHERICAL_DISTANCE_HAVERSINE_HPP #include #include #include #include #include #include #include namespace boost { namespace geometry { namespace strategy { namespace distance { namespace comparable { // Comparable haversine. // To compare distances, we can avoid: // - multiplication with radius and 2.0 // - applying sqrt // - applying asin (which is strictly (monotone) increasing) template < typename RadiusType, typename CalculationType = void > class haversine { public : template struct calculation_type : promote_floating_point < typename select_calculation_type < Point1, Point2, CalculationType >::type > {}; typedef RadiusType radius_type; explicit inline haversine(RadiusType const& r = 1.0) : m_radius(r) {} template static inline typename calculation_type::type apply(Point1 const& p1, Point2 const& p2) { return calculate::type>( get_as_radian<0>(p1), get_as_radian<1>(p1), get_as_radian<0>(p2), get_as_radian<1>(p2) ); } inline RadiusType radius() const { return m_radius; } private : template static inline R calculate(T1 const& lon1, T1 const& lat1, T2 const& lon2, T2 const& lat2) { return math::hav(lat2 - lat1) + cos(lat1) * cos(lat2) * math::hav(lon2 - lon1); } RadiusType m_radius; }; } // namespace comparable /*! \brief Distance calculation for spherical coordinates on a perfect sphere using haversine \ingroup strategies \tparam RadiusType \tparam_radius \tparam CalculationType \tparam_calculation \author Adapted from: http://williams.best.vwh.net/avform.htm \see http://en.wikipedia.org/wiki/Great-circle_distance \note (from Wiki:) The great circle distance d between two points with coordinates {lat1,lon1} and {lat2,lon2} is given by: d=acos(sin(lat1)*sin(lat2)+cos(lat1)*cos(lat2)*cos(lon1-lon2)) A mathematically equivalent formula, which is less subject to rounding error for short distances is: d=2*asin(sqrt((sin((lat1-lat2) / 2))^2 + cos(lat1)*cos(lat2)*(sin((lon1-lon2) / 2))^2)) \qbk{ [heading See also] [link geometry.reference.algorithms.distance.distance_3_with_strategy distance (with strategy)] } */ template < typename RadiusType, typename CalculationType = void > class haversine { typedef comparable::haversine comparable_type; public : template struct calculation_type : services::return_type {}; typedef RadiusType radius_type; /*! \brief Constructor \param radius radius of the sphere, defaults to 1.0 for the unit sphere */ inline haversine(RadiusType const& radius = 1.0) : m_radius(radius) {} /*! \brief applies the distance calculation \return the calculated distance (including multiplying with radius) \param p1 first point \param p2 second point */ template inline typename calculation_type::type apply(Point1 const& p1, Point2 const& p2) const { typedef typename calculation_type::type calculation_type; calculation_type const a = comparable_type::apply(p1, p2); calculation_type const c = calculation_type(2.0) * asin(math::sqrt(a)); return m_radius * c; } /*! \brief access to radius value \return the radius */ inline RadiusType radius() const { return m_radius; } private : RadiusType m_radius; }; #ifndef DOXYGEN_NO_STRATEGY_SPECIALIZATIONS namespace services { template struct tag > { typedef strategy_tag_distance_point_point type; }; template struct return_type, P1, P2> : haversine::template calculation_type {}; template struct comparable_type > { typedef comparable::haversine type; }; template struct get_comparable > { private : typedef haversine this_type; typedef comparable::haversine comparable_type; public : static inline comparable_type apply(this_type const& input) { return comparable_type(input.radius()); } }; template struct result_from_distance, P1, P2> { private : typedef haversine this_type; typedef typename return_type::type return_type; public : template static inline return_type apply(this_type const& , T const& value) { return return_type(value); } }; // Specializations for comparable::haversine template struct tag > { typedef strategy_tag_distance_point_point type; }; template struct return_type, P1, P2> : comparable::haversine::template calculation_type {}; template struct comparable_type > { typedef comparable::haversine type; }; template struct get_comparable > { private : typedef comparable::haversine this_type; public : static inline this_type apply(this_type const& input) { return input; } }; template struct result_from_distance, P1, P2> { private : typedef comparable::haversine strategy_type; typedef typename return_type::type return_type; public : template static inline return_type apply(strategy_type const& strategy, T const& distance) { return_type const s = sin((distance / strategy.radius()) / return_type(2)); return s * s; } }; // Register it as the default for point-types // in a spherical equatorial coordinate system template struct default_strategy < point_tag, point_tag, Point1, Point2, spherical_equatorial_tag, spherical_equatorial_tag > { typedef strategy::distance::haversine::type> type; }; // Note: spherical polar coordinate system requires "get_as_radian_equatorial" } // namespace services #endif // DOXYGEN_NO_STRATEGY_SPECIALIZATIONS }} // namespace strategy::distance }} // namespace boost::geometry #endif // BOOST_GEOMETRY_STRATEGIES_SPHERICAL_DISTANCE_HAVERSINE_HPP