// Copyright (c) 2006 Xiaogang Zhang // Use, modification and distribution are subject to the // Boost Software License, Version 1.0. (See accompanying file // LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt) #ifndef BOOST_MATH_BESSEL_I0_HPP #define BOOST_MATH_BESSEL_I0_HPP #ifdef _MSC_VER #pragma once #endif #include #include #include // Modified Bessel function of the first kind of order zero // minimax rational approximations on intervals, see // Blair and Edwards, Chalk River Report AECL-4928, 1974 namespace boost { namespace math { namespace detail{ template T bessel_i0(T x); template struct bessel_i0_initializer { struct init { init() { do_init(); } static void do_init() { bessel_i0(T(1)); } void force_instantiate()const{} }; static const init initializer; static void force_instantiate() { initializer.force_instantiate(); } }; template const typename bessel_i0_initializer::init bessel_i0_initializer::initializer; template T bessel_i0(T x) { bessel_i0_initializer::force_instantiate(); static const T P1[] = { static_cast(BOOST_MATH_BIG_CONSTANT(T, 64, -2.2335582639474375249e+15)), static_cast(BOOST_MATH_BIG_CONSTANT(T, 64, -5.5050369673018427753e+14)), static_cast(BOOST_MATH_BIG_CONSTANT(T, 64, -3.2940087627407749166e+13)), static_cast(BOOST_MATH_BIG_CONSTANT(T, 64, -8.4925101247114157499e+11)), static_cast(BOOST_MATH_BIG_CONSTANT(T, 64, -1.1912746104985237192e+10)), static_cast(BOOST_MATH_BIG_CONSTANT(T, 64, -1.0313066708737980747e+08)), static_cast(BOOST_MATH_BIG_CONSTANT(T, 64, -5.9545626019847898221e+05)), static_cast(BOOST_MATH_BIG_CONSTANT(T, 64, -2.4125195876041896775e+03)), static_cast(BOOST_MATH_BIG_CONSTANT(T, 64, -7.0935347449210549190e+00)), static_cast(BOOST_MATH_BIG_CONSTANT(T, 64, -1.5453977791786851041e-02)), static_cast(BOOST_MATH_BIG_CONSTANT(T, 64, -2.5172644670688975051e-05)), static_cast(BOOST_MATH_BIG_CONSTANT(T, 64, -3.0517226450451067446e-08)), static_cast(BOOST_MATH_BIG_CONSTANT(T, 64, -2.6843448573468483278e-11)), static_cast(BOOST_MATH_BIG_CONSTANT(T, 64, -1.5982226675653184646e-14)), static_cast(BOOST_MATH_BIG_CONSTANT(T, 64, -5.2487866627945699800e-18)), }; static const T Q1[] = { static_cast(BOOST_MATH_BIG_CONSTANT(T, 64, -2.2335582639474375245e+15)), static_cast(BOOST_MATH_BIG_CONSTANT(T, 64, 7.8858692566751002988e+12)), static_cast(BOOST_MATH_BIG_CONSTANT(T, 64, -1.2207067397808979846e+10)), static_cast(BOOST_MATH_BIG_CONSTANT(T, 64, 1.0377081058062166144e+07)), static_cast(BOOST_MATH_BIG_CONSTANT(T, 64, -4.8527560179962773045e+03)), static_cast(BOOST_MATH_BIG_CONSTANT(T, 64, 1.0)), }; static const T P2[] = { static_cast(BOOST_MATH_BIG_CONSTANT(T, 64, -2.2210262233306573296e-04)), static_cast(BOOST_MATH_BIG_CONSTANT(T, 64, 1.3067392038106924055e-02)), static_cast(BOOST_MATH_BIG_CONSTANT(T, 64, -4.4700805721174453923e-01)), static_cast(BOOST_MATH_BIG_CONSTANT(T, 64, 5.5674518371240761397e+00)), static_cast(BOOST_MATH_BIG_CONSTANT(T, 64, -2.3517945679239481621e+01)), static_cast(BOOST_MATH_BIG_CONSTANT(T, 64, 3.1611322818701131207e+01)), static_cast(BOOST_MATH_BIG_CONSTANT(T, 64, -9.6090021968656180000e+00)), }; static const T Q2[] = { static_cast(BOOST_MATH_BIG_CONSTANT(T, 64, -5.5194330231005480228e-04)), static_cast(BOOST_MATH_BIG_CONSTANT(T, 64, 3.2547697594819615062e-02)), static_cast(BOOST_MATH_BIG_CONSTANT(T, 64, -1.1151759188741312645e+00)), static_cast(BOOST_MATH_BIG_CONSTANT(T, 64, 1.3982595353892851542e+01)), static_cast(BOOST_MATH_BIG_CONSTANT(T, 64, -6.0228002066743340583e+01)), static_cast(BOOST_MATH_BIG_CONSTANT(T, 64, 8.5539563258012929600e+01)), static_cast(BOOST_MATH_BIG_CONSTANT(T, 64, -3.1446690275135491500e+01)), static_cast(BOOST_MATH_BIG_CONSTANT(T, 64, 1.0)), }; T value, factor, r; BOOST_MATH_STD_USING using namespace boost::math::tools; BOOST_ASSERT(x >= 0); // negative x is handled before we get here if (x == 0) { return static_cast(1); } if (x <= 15) // x in (0, 15] { T y = x * x; value = evaluate_polynomial(P1, y) / evaluate_polynomial(Q1, y); } else // x in (15, \infty) { T y = 1 / x - T(1) / 15; r = evaluate_polynomial(P2, y) / evaluate_polynomial(Q2, y); factor = exp(x) / sqrt(x); value = factor * r; } return value; } }}} // namespaces #endif // BOOST_MATH_BESSEL_I0_HPP