// Copyright (c) 2006 Xiaogang Zhang // Use, modification and distribution are subject to the // Boost Software License, Version 1.0. (See accompanying file // LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt) #ifndef BOOST_MATH_BESSEL_I1_HPP #define BOOST_MATH_BESSEL_I1_HPP #ifdef _MSC_VER #pragma once #endif #include #include #include // Modified Bessel function of the first kind of order one // minimax rational approximations on intervals, see // Blair and Edwards, Chalk River Report AECL-4928, 1974 namespace boost { namespace math { namespace detail{ template T bessel_i1(T x); template struct bessel_i1_initializer { struct init { init() { do_init(); } static void do_init() { bessel_i1(T(1)); } void force_instantiate()const{} }; static const init initializer; static void force_instantiate() { initializer.force_instantiate(); } }; template const typename bessel_i1_initializer::init bessel_i1_initializer::initializer; template T bessel_i1(T x) { bessel_i1_initializer::force_instantiate(); static const T P1[] = { static_cast(BOOST_MATH_BIG_CONSTANT(T, 64, -1.4577180278143463643e+15)), static_cast(BOOST_MATH_BIG_CONSTANT(T, 64, -1.7732037840791591320e+14)), static_cast(BOOST_MATH_BIG_CONSTANT(T, 64, -6.9876779648010090070e+12)), static_cast(BOOST_MATH_BIG_CONSTANT(T, 64, -1.3357437682275493024e+11)), static_cast(BOOST_MATH_BIG_CONSTANT(T, 64, -1.4828267606612366099e+09)), static_cast(BOOST_MATH_BIG_CONSTANT(T, 64, -1.0588550724769347106e+07)), static_cast(BOOST_MATH_BIG_CONSTANT(T, 64, -5.1894091982308017540e+04)), static_cast(BOOST_MATH_BIG_CONSTANT(T, 64, -1.8225946631657315931e+02)), static_cast(BOOST_MATH_BIG_CONSTANT(T, 64, -4.7207090827310162436e-01)), static_cast(BOOST_MATH_BIG_CONSTANT(T, 64, -9.1746443287817501309e-04)), static_cast(BOOST_MATH_BIG_CONSTANT(T, 64, -1.3466829827635152875e-06)), static_cast(BOOST_MATH_BIG_CONSTANT(T, 64, -1.4831904935994647675e-09)), static_cast(BOOST_MATH_BIG_CONSTANT(T, 64, -1.1928788903603238754e-12)), static_cast(BOOST_MATH_BIG_CONSTANT(T, 64, -6.5245515583151902910e-16)), static_cast(BOOST_MATH_BIG_CONSTANT(T, 64, -1.9705291802535139930e-19)), }; static const T Q1[] = { static_cast(BOOST_MATH_BIG_CONSTANT(T, 64, -2.9154360556286927285e+15)), static_cast(BOOST_MATH_BIG_CONSTANT(T, 64, 9.7887501377547640438e+12)), static_cast(BOOST_MATH_BIG_CONSTANT(T, 64, -1.4386907088588283434e+10)), static_cast(BOOST_MATH_BIG_CONSTANT(T, 64, 1.1594225856856884006e+07)), static_cast(BOOST_MATH_BIG_CONSTANT(T, 64, -5.1326864679904189920e+03)), static_cast(BOOST_MATH_BIG_CONSTANT(T, 64, 1.0)), }; static const T P2[] = { static_cast(BOOST_MATH_BIG_CONSTANT(T, 64, 1.4582087408985668208e-05)), static_cast(BOOST_MATH_BIG_CONSTANT(T, 64, -8.9359825138577646443e-04)), static_cast(BOOST_MATH_BIG_CONSTANT(T, 64, 2.9204895411257790122e-02)), static_cast(BOOST_MATH_BIG_CONSTANT(T, 64, -3.4198728018058047439e-01)), static_cast(BOOST_MATH_BIG_CONSTANT(T, 64, 1.3960118277609544334e+00)), static_cast(BOOST_MATH_BIG_CONSTANT(T, 64, -1.9746376087200685843e+00)), static_cast(BOOST_MATH_BIG_CONSTANT(T, 64, 8.5591872901933459000e-01)), static_cast(BOOST_MATH_BIG_CONSTANT(T, 64, -6.0437159056137599999e-02)), }; static const T Q2[] = { static_cast(BOOST_MATH_BIG_CONSTANT(T, 64, 3.7510433111922824643e-05)), static_cast(BOOST_MATH_BIG_CONSTANT(T, 64, -2.2835624489492512649e-03)), static_cast(BOOST_MATH_BIG_CONSTANT(T, 64, 7.4212010813186530069e-02)), static_cast(BOOST_MATH_BIG_CONSTANT(T, 64, -8.5017476463217924408e-01)), static_cast(BOOST_MATH_BIG_CONSTANT(T, 64, 3.2593714889036996297e+00)), static_cast(BOOST_MATH_BIG_CONSTANT(T, 64, -3.8806586721556593450e+00)), static_cast(BOOST_MATH_BIG_CONSTANT(T, 64, 1.0)), }; T value, factor, r, w; BOOST_MATH_STD_USING using namespace boost::math::tools; BOOST_ASSERT(x >= 0); // negative x is handled before we get here w = abs(x); if (x == 0) { return static_cast(0); } if (w <= 15) // w in (0, 15] { T y = x * x; r = evaluate_polynomial(P1, y) / evaluate_polynomial(Q1, y); factor = w; value = factor * r; } else // w in (15, \infty) { T y = 1 / w - T(1) / 15; r = evaluate_polynomial(P2, y) / evaluate_polynomial(Q2, y); factor = exp(w) / sqrt(w); value = factor * r; } return value; } }}} // namespaces #endif // BOOST_MATH_BESSEL_I1_HPP