// Copyright 2011 John Maddock. Distributed under the Boost // Distributed under the Boost Software License, Version 1.0. // (See accompanying file LICENSE_1_0.txt or copy at // http://www.boost.org/LICENSE_1_0.txt) // // This file has no include guards or namespaces - it's expanded inline inside default_ops.hpp // template void calc_log2(T& num, unsigned digits) { typedef typename boost::multiprecision::detail::canonical::type ui_type; typedef typename mpl::front::type si_type; // // String value with 1100 digits: // static const char* string_val = "0." "6931471805599453094172321214581765680755001343602552541206800094933936219696947156058633269964186875" "4200148102057068573368552023575813055703267075163507596193072757082837143519030703862389167347112335" "0115364497955239120475172681574932065155524734139525882950453007095326366642654104239157814952043740" "4303855008019441706416715186447128399681717845469570262716310645461502572074024816377733896385506952" "6066834113727387372292895649354702576265209885969320196505855476470330679365443254763274495125040606" "9438147104689946506220167720424524529612687946546193165174681392672504103802546259656869144192871608" "2938031727143677826548775664850856740776484514644399404614226031930967354025744460703080960850474866" "3852313818167675143866747664789088143714198549423151997354880375165861275352916610007105355824987941" "4729509293113897155998205654392871700072180857610252368892132449713893203784393530887748259701715591" "0708823683627589842589185353024363421436706118923678919237231467232172053401649256872747782344535347" "6481149418642386776774406069562657379600867076257199184734022651462837904883062033061144630073719489"; // // Check if we can just construct from string: // if(digits < 3640) // 3640 binary digits ~ 1100 decimal digits { num = string_val; return; } // // We calculate log2 from using the formula: // // ln(2) = 3/4 SUM[n>=0] ((-1)^n * N!^2 / (2^n(2n+1)!)) // // Numerator and denominator are calculated separately and then // divided at the end, we also precalculate the terms up to n = 5 // since these fit in a 32-bit integer anyway. // // See Gourdon, X., and Sebah, P. The logarithmic constant: log 2, Jan. 2004. // Also http://www.mpfr.org/algorithms.pdf. // num = static_cast(1180509120uL); T denom, next_term, temp; denom = static_cast(1277337600uL); next_term = static_cast(120uL); si_type sign = -1; ui_type limit = digits / 3 + 1; for(ui_type n = 6; n < limit; ++n) { temp = static_cast(2); eval_multiply(temp, ui_type(2 * n)); eval_multiply(temp, ui_type(2 * n + 1)); eval_multiply(num, temp); eval_multiply(denom, temp); sign = -sign; eval_multiply(next_term, n); eval_multiply(temp, next_term, next_term); if(sign < 0) temp.negate(); eval_add(num, temp); } eval_multiply(denom, ui_type(4)); eval_multiply(num, ui_type(3)); INSTRUMENT_BACKEND(denom); INSTRUMENT_BACKEND(num); eval_divide(num, denom); INSTRUMENT_BACKEND(num); } template void calc_e(T& result, unsigned digits) { typedef typename mpl::front::type ui_type; // // 1100 digits in string form: // const char* string_val = "2." "7182818284590452353602874713526624977572470936999595749669676277240766303535475945713821785251664274" "2746639193200305992181741359662904357290033429526059563073813232862794349076323382988075319525101901" "1573834187930702154089149934884167509244761460668082264800168477411853742345442437107539077744992069" "5517027618386062613313845830007520449338265602976067371132007093287091274437470472306969772093101416" "9283681902551510865746377211125238978442505695369677078544996996794686445490598793163688923009879312" "7736178215424999229576351482208269895193668033182528869398496465105820939239829488793320362509443117" "3012381970684161403970198376793206832823764648042953118023287825098194558153017567173613320698112509" "9618188159304169035159888851934580727386673858942287922849989208680582574927961048419844436346324496" "8487560233624827041978623209002160990235304369941849146314093431738143640546253152096183690888707016" "7683964243781405927145635490613031072085103837505101157477041718986106873969655212671546889570350354" "0212340784981933432106817012100562788023519303322474501585390473041995777709350366041699732972508869"; // // Check if we can just construct from string: // if(digits < 3640) // 3640 binary digits ~ 1100 decimal digits { result = string_val; return; } T lim; lim = ui_type(1); eval_ldexp(lim, lim, digits); // // Standard evaluation from the definition of e: http://functions.wolfram.com/Constants/E/02/ // result = ui_type(2); T denom; denom = ui_type(1); ui_type i = 2; do{ eval_multiply(denom, i); eval_multiply(result, i); eval_add(result, ui_type(1)); ++i; }while(denom.compare(lim) <= 0); eval_divide(result, denom); } template void calc_pi(T& result, unsigned digits) { typedef typename mpl::front::type ui_type; typedef typename mpl::front::type real_type; // // 1100 digits in string form: // const char* string_val = "3." "1415926535897932384626433832795028841971693993751058209749445923078164062862089986280348253421170679" "8214808651328230664709384460955058223172535940812848111745028410270193852110555964462294895493038196" "4428810975665933446128475648233786783165271201909145648566923460348610454326648213393607260249141273" "7245870066063155881748815209209628292540917153643678925903600113305305488204665213841469519415116094" "3305727036575959195309218611738193261179310511854807446237996274956735188575272489122793818301194912" "9833673362440656643086021394946395224737190702179860943702770539217176293176752384674818467669405132" "0005681271452635608277857713427577896091736371787214684409012249534301465495853710507922796892589235" "4201995611212902196086403441815981362977477130996051870721134999999837297804995105973173281609631859" "5024459455346908302642522308253344685035261931188171010003137838752886587533208381420617177669147303" "5982534904287554687311595628638823537875937519577818577805321712268066130019278766111959092164201989" "3809525720106548586327886593615338182796823030195203530185296899577362259941389124972177528347913152"; // // Check if we can just construct from string: // if(digits < 3640) // 3640 binary digits ~ 1100 decimal digits { result = string_val; return; } T a; a = ui_type(1); T b; T A(a); T B; B = real_type(0.5f); T D; D = real_type(0.25f); T lim; lim = ui_type(1); eval_ldexp(lim, lim, -(int)digits); // // This algorithm is from: // Schonhage, A., Grotefeld, A. F. W., and Vetter, E. Fast Algorithms: A Multitape Turing // Machine Implementation. BI Wissenschaftverlag, 1994. // Also described in MPFR's algorithm guide: http://www.mpfr.org/algorithms.pdf. // // Let: // a[0] = A[0] = 1 // B[0] = 1/2 // D[0] = 1/4 // Then: // S[k+1] = (A[k]+B[k]) / 4 // b[k] = sqrt(B[k]) // a[k+1] = a[k]^2 // B[k+1] = 2(A[k+1]-S[k+1]) // D[k+1] = D[k] - 2^k(A[k+1]-B[k+1]) // Stop when |A[k]-B[k]| <= 2^(k-p) // and PI = B[k]/D[k] unsigned k = 1; do { eval_add(result, A, B); eval_ldexp(result, result, -2); eval_sqrt(b, B); eval_add(a, b); eval_ldexp(a, a, -1); eval_multiply(A, a, a); eval_subtract(B, A, result); eval_ldexp(B, B, 1); eval_subtract(result, A, B); bool neg = eval_get_sign(result) < 0; if(neg) result.negate(); if(result.compare(lim) <= 0) break; if(neg) result.negate(); eval_ldexp(result, result, k - 1); eval_subtract(D, result); ++k; eval_ldexp(lim, lim, 1); } while(true); eval_divide(result, B, D); } template struct constant_initializer { static void do_nothing() { init.do_nothing(); } private: struct initializer { initializer() { F(); } void do_nothing()const{} }; static const initializer init; }; template typename constant_initializer::initializer const constant_initializer::init; template const T& get_constant_ln2() { static T result; static bool b = false; if(!b) { calc_log2(result, boost::multiprecision::detail::digits2 >::value); b = true; } constant_initializer >::do_nothing(); return result; } template const T& get_constant_e() { static T result; static bool b = false; if(!b) { calc_e(result, boost::multiprecision::detail::digits2 >::value); b = true; } constant_initializer >::do_nothing(); return result; } template const T& get_constant_pi() { static T result; static bool b = false; if(!b) { calc_pi(result, boost::multiprecision::detail::digits2 >::value); b = true; } constant_initializer >::do_nothing(); return result; }