/////////////////////////////////////////////////////////////////////////////// // Copyright 2011 John Maddock. Distributed under the Boost // Software License, Version 1.0. (See accompanying file // LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt) #ifndef BOOST_MP_GENERIC_INTERCONVERT_HPP #define BOOST_MP_GENERIC_INTERCONVERT_HPP #include #ifdef BOOST_MSVC #pragma warning(push) #pragma warning(disable:4127) #endif namespace boost{ namespace multiprecision{ namespace detail{ template inline To do_cast(const From & from) { return static_cast(from); } template inline To do_cast(const number& from) { return from.template convert_to(); } template void generic_interconvert(To& to, const From& from, const mpl::int_& /*to_type*/, const mpl::int_& /*from_type*/) { using default_ops::eval_get_sign; using default_ops::eval_bitwise_and; using default_ops::eval_convert_to; using default_ops::eval_right_shift; using default_ops::eval_ldexp; using default_ops::eval_add; // smallest unsigned type handled natively by "From" is likely to be it's limb_type: typedef typename canonical::type limb_type; // get the corresponding type that we can assign to "To": typedef typename canonical::type to_type; From t(from); bool is_neg = eval_get_sign(t) < 0; if(is_neg) t.negate(); // Pick off the first limb: limb_type limb; limb_type mask = ~static_cast(0); From fl; eval_bitwise_and(fl, t, mask); eval_convert_to(&limb, fl); to = static_cast(limb); eval_right_shift(t, std::numeric_limits::digits); // // Then keep picking off more limbs until "t" is zero: // To l; unsigned shift = std::numeric_limits::digits; while(!eval_is_zero(t)) { eval_bitwise_and(fl, t, mask); eval_convert_to(&limb, fl); l = static_cast(limb); eval_right_shift(t, std::numeric_limits::digits); eval_ldexp(l, l, shift); eval_add(to, l); shift += std::numeric_limits::digits; } // // Finish off by setting the sign: // if(is_neg) to.negate(); } template void generic_interconvert(To& to, const From& from, const mpl::int_& /*to_type*/, const mpl::int_& /*from_type*/) { using default_ops::eval_get_sign; using default_ops::eval_bitwise_and; using default_ops::eval_convert_to; using default_ops::eval_right_shift; using default_ops::eval_left_shift; using default_ops::eval_bitwise_or; using default_ops::eval_is_zero; // smallest unsigned type handled natively by "From" is likely to be it's limb_type: typedef typename canonical::type limb_type; // get the corresponding type that we can assign to "To": typedef typename canonical::type to_type; From t(from); bool is_neg = eval_get_sign(t) < 0; if(is_neg) t.negate(); // Pick off the first limb: limb_type limb; limb_type mask = static_cast(~static_cast(0)); From fl; eval_bitwise_and(fl, t, mask); eval_convert_to(&limb, fl); to = static_cast(limb); eval_right_shift(t, std::numeric_limits::digits); // // Then keep picking off more limbs until "t" is zero: // To l; unsigned shift = std::numeric_limits::digits; while(!eval_is_zero(t)) { eval_bitwise_and(fl, t, mask); eval_convert_to(&limb, fl); l = static_cast(limb); eval_right_shift(t, std::numeric_limits::digits); eval_left_shift(l, shift); eval_bitwise_or(to, l); shift += std::numeric_limits::digits; } // // Finish off by setting the sign: // if(is_neg) to.negate(); } template void generic_interconvert(To& to, const From& from, const mpl::int_& /*to_type*/, const mpl::int_& /*from_type*/) { #ifdef BOOST_MSVC #pragma warning(push) #pragma warning(disable:4127) #endif // // The code here only works when the radix of "From" is 2, we could try shifting by other // radixes but it would complicate things.... use a string conversion when the radix is other // than 2: // if(std::numeric_limits >::radix != 2) { to = from.str(0, std::ios_base::fmtflags()).c_str(); return; } typedef typename canonical::type ui_type; using default_ops::eval_fpclassify; using default_ops::eval_add; using default_ops::eval_subtract; using default_ops::eval_convert_to; // // First classify the input, then handle the special cases: // int c = eval_fpclassify(from); if(c == (int)FP_ZERO) { to = ui_type(0); return; } else if(c == (int)FP_NAN) { to = static_cast("nan"); return; } else if(c == (int)FP_INFINITE) { to = static_cast("inf"); if(eval_get_sign(from) < 0) to.negate(); return; } typename From::exponent_type e; From f, term; to = ui_type(0); eval_frexp(f, from, &e); static const int shift = std::numeric_limits::digits - 1; while(!eval_is_zero(f)) { // extract int sized bits from f: eval_ldexp(f, f, shift); eval_floor(term, f); e -= shift; eval_ldexp(to, to, shift); typename boost::multiprecision::detail::canonical::type ll; eval_convert_to(&ll, term); eval_add(to, ll); eval_subtract(f, term); } typedef typename To::exponent_type to_exponent; if((e > (std::numeric_limits::max)()) || (e < (std::numeric_limits::min)())) { to = static_cast("inf"); if(eval_get_sign(from) < 0) to.negate(); return; } eval_ldexp(to, to, static_cast(e)); #ifdef BOOST_MSVC #pragma warning(pop) #endif } template void generic_interconvert(To& to, const From& from, const mpl::int_& /*to_type*/, const mpl::int_& /*from_type*/) { typedef typename component_type >::type to_component_type; number t(from); to_component_type n(numerator(t)), d(denominator(t)); using default_ops::assign_components; assign_components(to, n.backend(), d.backend()); } template void generic_interconvert(To& to, const From& from, const mpl::int_& /*to_type*/, const mpl::int_& /*from_type*/) { typedef typename component_type >::type to_component_type; number t(from); to_component_type n(t), d(1); using default_ops::assign_components; assign_components(to, n.backend(), d.backend()); } template R safe_convert_to_float(const LargeInteger& i) { using std::ldexp; if(!i) return R(0); if(std::numeric_limits::is_specialized && std::numeric_limits::max_exponent) { LargeInteger val(i); if(val.sign() < 0) val = -val; unsigned mb = msb(val); if(mb >= std::numeric_limits::max_exponent) { int scale_factor = (int)mb + 1 - std::numeric_limits::max_exponent; BOOST_ASSERT(scale_factor >= 1); val >>= scale_factor; R result = val.template convert_to(); if(std::numeric_limits::digits == 0 || std::numeric_limits::digits >= std::numeric_limits::max_exponent) { // // Calculate and add on the remainder, only if there are more // digits in the mantissa that the size of the exponent, in // other words if we are dropping digits in the conversion // otherwise: // LargeInteger remainder(i); remainder &= (LargeInteger(1) << scale_factor) - 1; result += ldexp(safe_convert_to_float(remainder), -scale_factor); } return i.sign() < 0 ? static_cast(-result) : result; } } return i.template convert_to(); } template inline typename disable_if_c::value || is_floating_point::value>::type generic_convert_rational_to_float_imp(To& result, const Integer& n, const Integer& d, const mpl::true_&) { // // If we get here, then there's something about one type or the other // that prevents an exactly rounded result from being calculated // (or at least it's not clear how to implement such a thing). // using default_ops::eval_divide; number fn(safe_convert_to_float >(n)), fd(safe_convert_to_float >(d)); eval_divide(result, fn.backend(), fd.backend()); } template inline typename enable_if_c::value || is_floating_point::value>::type generic_convert_rational_to_float_imp(To& result, const Integer& n, const Integer& d, const mpl::true_&) { // // If we get here, then there's something about one type or the other // that prevents an exactly rounded result from being calculated // (or at least it's not clear how to implement such a thing). // To fd(safe_convert_to_float(d)); result = safe_convert_to_float(n); result /= fd; } template typename enable_if_c::value || is_floating_point::value>::type generic_convert_rational_to_float_imp(To& result, Integer& num, Integer& denom, const mpl::false_&) { // // If we get here, then the precision of type To is known, and the integer type is unbounded // so we can use integer division plus manipulation of the remainder to get an exactly // rounded result. // if(num == 0) { result = 0; return; } bool s = false; if(num < 0) { s = true; num = -num; } int denom_bits = msb(denom); int shift = std::numeric_limits::digits + denom_bits - msb(num) + 1; if(shift > 0) num <<= shift; else if(shift < 0) denom <<= std::abs(shift); Integer q, r; divide_qr(num, denom, q, r); int q_bits = msb(q); if(q_bits == std::numeric_limits::digits) { // // Round up if 2 * r > denom: // r <<= 1; int c = r.compare(denom); if(c > 0) ++q; else if((c == 0) && (q & 1u)) { ++q; } } else { BOOST_ASSERT(q_bits == 1 + std::numeric_limits::digits); // // We basically already have the rounding info: // if(q & 1u) { if(r || (q & 2u)) ++q; } } using std::ldexp; result = do_cast(q); result = ldexp(result, -shift); if(s) result = -result; } template inline typename disable_if_c::value || is_floating_point::value>::type generic_convert_rational_to_float_imp(To& result, Integer& num, Integer& denom, const mpl::false_& tag) { number t; generic_convert_rational_to_float_imp(t, num, denom, tag); result = t.backend(); } template inline void generic_convert_rational_to_float(To& result, const From& f) { // // Type From is always a Backend to number<>, or an // instance of number<>, but we allow // To to be either a Backend type, or a real number type, // that way we can call this from generic conversions, and // from specific conversions to built in types. // typedef typename mpl::if_c::value, From, number >::type actual_from_type; typedef typename mpl::if_c::value || is_floating_point::value, To, number >::type actual_to_type; typedef typename component_type::type integer_type; typedef mpl::bool_::is_specialized || std::numeric_limits::is_bounded || !std::numeric_limits::is_specialized || !std::numeric_limits::is_bounded || (std::numeric_limits::radix != 2)> dispatch_tag; integer_type n(numerator(static_cast(f))), d(denominator(static_cast(f))); generic_convert_rational_to_float_imp(result, n, d, dispatch_tag()); } template inline void generic_interconvert(To& to, const From& from, const mpl::int_& /*to_type*/, const mpl::int_& /*from_type*/) { generic_convert_rational_to_float(to, from); } template void generic_interconvert_float2rational(To& to, const From& from, const mpl::int_<2>& /*radix*/) { typedef typename mpl::front::type ui_type; static const int shift = std::numeric_limits::digits; typename From::exponent_type e; typename component_type >::type num, denom; number val(from); val = frexp(val, &e); while(val) { val = ldexp(val, shift); e -= shift; long long ll = boost::math::lltrunc(val); val -= ll; num <<= shift; num += ll; } denom = ui_type(1u); if(e < 0) denom <<= -e; else if(e > 0) num <<= e; assign_components(to, num.backend(), denom.backend()); } template void generic_interconvert_float2rational(To& to, const From& from, const mpl::int_& /*radix*/) { // // This is almost the same as the binary case above, but we have to use // scalbn and ilogb rather than ldexp and frexp, we also only extract // one Radix digit at a time which is terribly inefficient! // typedef typename mpl::front::type ui_type; typename From::exponent_type e; typename component_type::type num, denom; number val(from); e = ilogb(val); val = scalbn(val, -e); while(val) { long long ll = boost::math::lltrunc(val); val -= ll; val = scalbn(val, 1); num *= Radix; num += ll; --e; } ++e; denom = ui_type(Radix); denom = pow(denom, abs(e)); if(e > 0) { num *= denom; denom = 1; } assign_components(to, num, denom); } template void generic_interconvert(To& to, const From& from, const mpl::int_& /*to_type*/, const mpl::int_& /*from_type*/) { generic_interconvert_float2rational(to, from, mpl::int_ >::radix>()); } }}} // namespaces #ifdef BOOST_MSVC #pragma warning(pop) #endif #endif // BOOST_MP_GENERIC_INTERCONVERT_HPP