////////////////////////////////////////////////////////////////////////////// // // (C) Copyright Ion Gaztanaga 2005-2012. Distributed under the Boost // Software License, Version 1.0. (See accompanying file // LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt) // // See http://www.boost.org/libs/container for documentation. // ////////////////////////////////////////////////////////////////////////////// #ifndef BOOST_CONTAINER_FLAT_MAP_HPP #define BOOST_CONTAINER_FLAT_MAP_HPP #if (defined _MSC_VER) && (_MSC_VER >= 1200) # pragma once #endif #include #include #include #include #include #include #include #include #include #include #include #include #ifdef BOOST_CONTAINER_DOXYGEN_INVOKED namespace boost { namespace container { #else namespace boost { namespace container { #endif /// @cond // Forward declarations of operators == and <, needed for friend declarations. #ifdef BOOST_CONTAINER_DOXYGEN_INVOKED template >, class A = std::allocator > #else template #endif class flat_map; template inline bool operator==(const flat_map& x, const flat_map& y); template inline bool operator<(const flat_map& x, const flat_map& y); namespace container_detail{ template static D &force(const S &s) { return *const_cast((reinterpret_cast(&s))); } template static D force_copy(S s) { D *vp = reinterpret_cast(&s); return D(*vp); } } //namespace container_detail{ /// @endcond //! A flat_map is a kind of associative container that supports unique keys (contains at //! most one of each key value) and provides for fast retrieval of values of another //! type T based on the keys. The flat_map class supports random-access iterators. //! //! A flat_map satisfies all of the requirements of a container and of a reversible //! container and of an associative container. A flat_map also provides //! most operations described for unique keys. For a //! flat_map the key_type is Key and the value_type is std::pair //! (unlike std::map which value_type is std::pair<const Key, T>). //! //! Pred is the ordering function for Keys (e.g. std::less). //! //! A is the allocator to allocate the value_types //! (e.g. allocator< std::pair >). //! //! flat_map is similar to std::map but it's implemented like an ordered vector. //! This means that inserting a new element into a flat_map invalidates //! previous iterators and references //! //! Erasing an element of a flat_map invalidates iterators and references //! pointing to elements that come after (their keys are bigger) the erased element. #ifdef BOOST_CONTAINER_DOXYGEN_INVOKED template >, class A = std::allocator > #else template #endif class flat_map { /// @cond private: BOOST_COPYABLE_AND_MOVABLE(flat_map) //This is the tree that we should store if pair was movable typedef container_detail::flat_tree, container_detail::select1st< std::pair >, Pred, A> tree_t; //This is the real tree stored here. It's based on a movable pair typedef container_detail::flat_tree, container_detail::select1st >, Pred, typename allocator_traits::template portable_rebind_alloc >::type> impl_tree_t; impl_tree_t m_flat_tree; // flat tree representing flat_map typedef typename impl_tree_t::value_type impl_value_type; typedef typename impl_tree_t::pointer impl_pointer; typedef typename impl_tree_t::const_pointer impl_const_pointer; typedef typename impl_tree_t::reference impl_reference; typedef typename impl_tree_t::const_reference impl_const_reference; typedef typename impl_tree_t::value_compare impl_value_compare; typedef typename impl_tree_t::iterator impl_iterator; typedef typename impl_tree_t::const_iterator impl_const_iterator; typedef typename impl_tree_t::reverse_iterator impl_reverse_iterator; typedef typename impl_tree_t::const_reverse_iterator impl_const_reverse_iterator; typedef typename impl_tree_t::allocator_type impl_allocator_type; typedef allocator_traits allocator_traits_type; /// @endcond public: // typedefs: typedef Key key_type; typedef T mapped_type; typedef typename std::pair value_type; typedef typename allocator_traits_type::pointer pointer; typedef typename allocator_traits_type::const_pointer const_pointer; typedef typename allocator_traits_type::reference reference; typedef typename allocator_traits_type::const_reference const_reference; typedef typename impl_tree_t::size_type size_type; typedef typename impl_tree_t::difference_type difference_type; typedef container_detail::flat_tree_value_compare < Pred , container_detail::select1st< std::pair > , std::pair > value_compare; typedef Pred key_compare; typedef typename container_detail:: get_flat_tree_iterators::iterator iterator; typedef typename container_detail:: get_flat_tree_iterators::const_iterator const_iterator; typedef typename container_detail:: get_flat_tree_iterators ::reverse_iterator reverse_iterator; typedef typename container_detail:: get_flat_tree_iterators ::const_reverse_iterator const_reverse_iterator; typedef A allocator_type; //!Standard extension typedef A stored_allocator_type; //!Standard extension for C++03 compilers with non-movable std::pair typedef impl_value_type movable_value_type; public: //! Effects: Default constructs an empty flat_map. //! //! Complexity: Constant. flat_map() : m_flat_tree() {} //! Effects: Constructs an empty flat_map using the specified //! comparison object and allocator. //! //! Complexity: Constant. explicit flat_map(const Pred& comp, const allocator_type& a = allocator_type()) : m_flat_tree(comp, container_detail::force(a)) {} //! Effects: Constructs an empty flat_map using the specified comparison object and //! allocator, and inserts elements from the range [first ,last ). //! //! Complexity: Linear in N if the range [first ,last ) is already sorted using //! comp and otherwise N logN, where N is last - first. template flat_map(InputIterator first, InputIterator last, const Pred& comp = Pred(), const allocator_type& a = allocator_type()) : m_flat_tree(comp, container_detail::force(a)) { m_flat_tree.insert_unique(first, last); } //! Effects: Constructs an empty flat_map using the specified comparison object and //! allocator, and inserts elements from the ordered unique range [first ,last). This function //! is more efficient than the normal range creation for ordered ranges. //! //! Requires: [first ,last) must be ordered according to the predicate and must be //! unique values. //! //! Complexity: Linear in N. //! //! Note: Non-standard extension. template flat_map( ordered_unique_range_t, InputIterator first, InputIterator last , const Pred& comp = Pred(), const allocator_type& a = allocator_type()) : m_flat_tree(ordered_range, first, last, comp, a) {} //! Effects: Copy constructs a flat_map. //! //! Complexity: Linear in x.size(). flat_map(const flat_map& x) : m_flat_tree(x.m_flat_tree) {} //! Effects: Move constructs a flat_map. //! Constructs *this using x's resources. //! //! Complexity: Constant. //! //! Postcondition: x is emptied. flat_map(BOOST_RV_REF(flat_map) x) : m_flat_tree(boost::move(x.m_flat_tree)) {} //! Effects: Copy constructs a flat_map using the specified allocator. //! //! Complexity: Linear in x.size(). flat_map(const flat_map& x, const allocator_type &a) : m_flat_tree(x.m_flat_tree, a) {} //! Effects: Move constructs a flat_map using the specified allocator. //! Constructs *this using x's resources. //! //! Complexity: Constant if x.get_allocator() == a, linear otherwise. flat_map(BOOST_RV_REF(flat_map) x, const allocator_type &a) : m_flat_tree(boost::move(x.m_flat_tree), a) {} //! Effects: Makes *this a copy of x. //! //! Complexity: Linear in x.size(). flat_map& operator=(BOOST_COPY_ASSIGN_REF(flat_map) x) { m_flat_tree = x.m_flat_tree; return *this; } //! Effects: Move constructs a flat_map. //! Constructs *this using x's resources. //! //! Complexity: Construct. //! //! Postcondition: x is emptied. flat_map& operator=(BOOST_RV_REF(flat_map) mx) { m_flat_tree = boost::move(mx.m_flat_tree); return *this; } //! Effects: Returns the comparison object out //! of which a was constructed. //! //! Complexity: Constant. key_compare key_comp() const { return container_detail::force_copy(m_flat_tree.key_comp()); } //! Effects: Returns an object of value_compare constructed out //! of the comparison object. //! //! Complexity: Constant. value_compare value_comp() const { return value_compare(container_detail::force_copy(m_flat_tree.key_comp())); } //! Effects: Returns a copy of the Allocator that //! was passed to the object's constructor. //! //! Complexity: Constant. allocator_type get_allocator() const { return container_detail::force_copy(m_flat_tree.get_allocator()); } const stored_allocator_type &get_stored_allocator() const { return container_detail::force(m_flat_tree.get_stored_allocator()); } stored_allocator_type &get_stored_allocator() { return container_detail::force(m_flat_tree.get_stored_allocator()); } //! Effects: Returns an iterator to the first element contained in the container. //! //! Throws: Nothing. //! //! Complexity: Constant. iterator begin() { return container_detail::force_copy(m_flat_tree.begin()); } //! Effects: Returns a const_iterator to the first element contained in the container. //! //! Throws: Nothing. //! //! Complexity: Constant. const_iterator begin() const { return container_detail::force_copy(m_flat_tree.begin()); } //! Effects: Returns an iterator to the end of the container. //! //! Throws: Nothing. //! //! Complexity: Constant. iterator end() { return container_detail::force_copy(m_flat_tree.end()); } //! Effects: Returns a const_iterator to the end of the container. //! //! Throws: Nothing. //! //! Complexity: Constant. const_iterator end() const { return container_detail::force_copy(m_flat_tree.end()); } //! Effects: Returns a reverse_iterator pointing to the beginning //! of the reversed container. //! //! Throws: Nothing. //! //! Complexity: Constant. reverse_iterator rbegin() { return container_detail::force_copy(m_flat_tree.rbegin()); } //! Effects: Returns a const_reverse_iterator pointing to the beginning //! of the reversed container. //! //! Throws: Nothing. //! //! Complexity: Constant. const_reverse_iterator rbegin() const { return container_detail::force_copy(m_flat_tree.rbegin()); } //! Effects: Returns a reverse_iterator pointing to the end //! of the reversed container. //! //! Throws: Nothing. //! //! Complexity: Constant. reverse_iterator rend() { return container_detail::force_copy(m_flat_tree.rend()); } //! Effects: Returns a const_reverse_iterator pointing to the end //! of the reversed container. //! //! Throws: Nothing. //! //! Complexity: Constant. const_reverse_iterator rend() const { return container_detail::force_copy(m_flat_tree.rend()); } //! Effects: Returns a const_iterator to the first element contained in the container. //! //! Throws: Nothing. //! //! Complexity: Constant. const_iterator cbegin() const { return container_detail::force_copy(m_flat_tree.cbegin()); } //! Effects: Returns a const_iterator to the end of the container. //! //! Throws: Nothing. //! //! Complexity: Constant. const_iterator cend() const { return container_detail::force_copy(m_flat_tree.cend()); } //! Effects: Returns a const_reverse_iterator pointing to the beginning //! of the reversed container. //! //! Throws: Nothing. //! //! Complexity: Constant. const_reverse_iterator crbegin() const { return container_detail::force_copy(m_flat_tree.crbegin()); } //! Effects: Returns a const_reverse_iterator pointing to the end //! of the reversed container. //! //! Throws: Nothing. //! //! Complexity: Constant. const_reverse_iterator crend() const { return container_detail::force_copy(m_flat_tree.crend()); } //! Effects: Returns true if the container contains no elements. //! //! Throws: Nothing. //! //! Complexity: Constant. bool empty() const { return m_flat_tree.empty(); } //! Effects: Returns the number of the elements contained in the container. //! //! Throws: Nothing. //! //! Complexity: Constant. size_type size() const { return m_flat_tree.size(); } //! Effects: Returns the largest possible size of the container. //! //! Throws: Nothing. //! //! Complexity: Constant. size_type max_size() const { return m_flat_tree.max_size(); } #if defined(BOOST_CONTAINER_DOXYGEN_INVOKED) //! Effects: If there is no key equivalent to x in the flat_map, inserts //! value_type(x, T()) into the flat_map. //! //! Returns: A reference to the mapped_type corresponding to x in *this. //! //! Complexity: Logarithmic. mapped_type &operator[](const key_type& k); //! Effects: If there is no key equivalent to x in the flat_map, inserts //! value_type(move(x), T()) into the flat_map (the key is move-constructed) //! //! Returns: A reference to the mapped_type corresponding to x in *this. //! //! Complexity: Logarithmic. mapped_type &operator[](key_type &&k) ; #else BOOST_MOVE_CONVERSION_AWARE_CATCH( operator[] , key_type, mapped_type&, priv_subscript) #endif //! Returns: A reference to the element whose key is equivalent to x. //! Throws: An exception object of type out_of_range if no such element is present. //! Complexity: logarithmic. T& at(const key_type& k) { iterator i = this->find(k); if(i == this->end()){ throw std::out_of_range("key not found"); } return i->second; } //! Returns: A reference to the element whose key is equivalent to x. //! Throws: An exception object of type out_of_range if no such element is present. //! Complexity: logarithmic. const T& at(const key_type& k) const { const_iterator i = this->find(k); if(i == this->end()){ throw std::out_of_range("key not found"); } return i->second; } //! Effects: Swaps the contents of *this and x. //! //! Throws: Nothing. //! //! Complexity: Constant. void swap(flat_map& x) { m_flat_tree.swap(x.m_flat_tree); } //! Effects: Inserts x if and only if there is no element in the container //! with key equivalent to the key of x. //! //! Returns: The bool component of the returned pair is true if and only //! if the insertion takes place, and the iterator component of the pair //! points to the element with key equivalent to the key of x. //! //! Complexity: Logarithmic search time plus linear insertion //! to the elements with bigger keys than x. //! //! Note: If an element is inserted it might invalidate elements. std::pair insert(const value_type& x) { return container_detail::force_copy >( m_flat_tree.insert_unique(container_detail::force(x))); } //! Effects: Inserts a new value_type move constructed from the pair if and //! only if there is no element in the container with key equivalent to the key of x. //! //! Returns: The bool component of the returned pair is true if and only //! if the insertion takes place, and the iterator component of the pair //! points to the element with key equivalent to the key of x. //! //! Complexity: Logarithmic search time plus linear insertion //! to the elements with bigger keys than x. //! //! Note: If an element is inserted it might invalidate elements. std::pair insert(BOOST_RV_REF(value_type) x) { return container_detail::force_copy >( m_flat_tree.insert_unique(boost::move(container_detail::force(x)))); } //! Effects: Inserts a new value_type move constructed from the pair if and //! only if there is no element in the container with key equivalent to the key of x. //! //! Returns: The bool component of the returned pair is true if and only //! if the insertion takes place, and the iterator component of the pair //! points to the element with key equivalent to the key of x. //! //! Complexity: Logarithmic search time plus linear insertion //! to the elements with bigger keys than x. //! //! Note: If an element is inserted it might invalidate elements. std::pair insert(BOOST_RV_REF(movable_value_type) x) { return container_detail::force_copy > (m_flat_tree.insert_unique(boost::move(x))); } //! Effects: Inserts a copy of x in the container if and only if there is //! no element in the container with key equivalent to the key of x. //! p is a hint pointing to where the insert should start to search. //! //! Returns: An iterator pointing to the element with key equivalent //! to the key of x. //! //! Complexity: Logarithmic search time (constant if x is inserted //! right before p) plus insertion linear to the elements with bigger keys than x. //! //! Note: If an element is inserted it might invalidate elements. iterator insert(const_iterator position, const value_type& x) { return container_detail::force_copy( m_flat_tree.insert_unique( container_detail::force_copy(position) , container_detail::force(x))); } //! Effects: Inserts an element move constructed from x in the container. //! p is a hint pointing to where the insert should start to search. //! //! Returns: An iterator pointing to the element with key equivalent to the key of x. //! //! Complexity: Logarithmic search time (constant if x is inserted //! right before p) plus insertion linear to the elements with bigger keys than x. //! //! Note: If an element is inserted it might invalidate elements. iterator insert(const_iterator position, BOOST_RV_REF(value_type) x) { return container_detail::force_copy (m_flat_tree.insert_unique( container_detail::force_copy(position) , boost::move(container_detail::force(x)))); } //! Effects: Inserts an element move constructed from x in the container. //! p is a hint pointing to where the insert should start to search. //! //! Returns: An iterator pointing to the element with key equivalent to the key of x. //! //! Complexity: Logarithmic search time (constant if x is inserted //! right before p) plus insertion linear to the elements with bigger keys than x. //! //! Note: If an element is inserted it might invalidate elements. iterator insert(const_iterator position, BOOST_RV_REF(movable_value_type) x) { return container_detail::force_copy( m_flat_tree.insert_unique(container_detail::force_copy(position), boost::move(x))); } //! Requires: first, last are not iterators into *this. //! //! Effects: inserts each element from the range [first,last) if and only //! if there is no element with key equivalent to the key of that element. //! //! Complexity: At most N log(size()+N) (N is the distance from first to last) //! search time plus N*size() insertion time. //! //! Note: If an element is inserted it might invalidate elements. template void insert(InputIterator first, InputIterator last) { m_flat_tree.insert_unique(first, last); } //! Requires: first, last are not iterators into *this. //! //! Requires: [first ,last) must be ordered according to the predicate and must be //! unique values. //! //! Effects: inserts each element from the range [first,last) if and only //! if there is no element with key equivalent to the key of that element. This //! function is more efficient than the normal range creation for ordered ranges. //! //! Complexity: At most N log(size()+N) (N is the distance from first to last) //! search time plus N*size() insertion time. //! //! Note: If an element is inserted it might invalidate elements. template void insert(ordered_unique_range_t, InputIterator first, InputIterator last) { m_flat_tree.insert_unique(ordered_unique_range, first, last); } #if defined(BOOST_CONTAINER_PERFECT_FORWARDING) || defined(BOOST_CONTAINER_DOXYGEN_INVOKED) //! Effects: Inserts an object x of type T constructed with //! std::forward(args)... if and only if there is no element in the container //! with key equivalent to the key of x. //! //! Returns: The bool component of the returned pair is true if and only //! if the insertion takes place, and the iterator component of the pair //! points to the element with key equivalent to the key of x. //! //! Complexity: Logarithmic search time plus linear insertion //! to the elements with bigger keys than x. //! //! Note: If an element is inserted it might invalidate elements. template std::pair emplace(Args&&... args) { return container_detail::force_copy< std::pair >(m_flat_tree.emplace_unique(boost::forward(args)...)); } //! Effects: Inserts an object of type T constructed with //! std::forward(args)... in the container if and only if there is //! no element in the container with key equivalent to the key of x. //! p is a hint pointing to where the insert should start to search. //! //! Returns: An iterator pointing to the element with key equivalent //! to the key of x. //! //! Complexity: Logarithmic search time (constant if x is inserted //! right before p) plus insertion linear to the elements with bigger keys than x. //! //! Note: If an element is inserted it might invalidate elements. template iterator emplace_hint(const_iterator hint, Args&&... args) { return container_detail::force_copy (m_flat_tree.emplace_hint_unique( container_detail::force_copy(hint) , boost::forward(args)...)); } #else //#ifdef BOOST_CONTAINER_PERFECT_FORWARDING #define BOOST_PP_LOCAL_MACRO(n) \ BOOST_PP_EXPR_IF(n, template<) BOOST_PP_ENUM_PARAMS(n, class P) BOOST_PP_EXPR_IF(n, >) \ std::pair emplace(BOOST_PP_ENUM(n, BOOST_CONTAINER_PP_PARAM_LIST, _)) \ { return container_detail::force_copy< std::pair > \ (m_flat_tree.emplace_unique(BOOST_PP_ENUM(n, BOOST_CONTAINER_PP_PARAM_FORWARD, _))); } \ \ BOOST_PP_EXPR_IF(n, template<) BOOST_PP_ENUM_PARAMS(n, class P) BOOST_PP_EXPR_IF(n, >) \ iterator emplace_hint(const_iterator hint \ BOOST_PP_ENUM_TRAILING(n, BOOST_CONTAINER_PP_PARAM_LIST, _)) \ { return container_detail::force_copy(m_flat_tree.emplace_hint_unique \ (container_detail::force_copy(hint) \ BOOST_PP_ENUM_TRAILING(n, BOOST_CONTAINER_PP_PARAM_FORWARD, _))); } \ //! #define BOOST_PP_LOCAL_LIMITS (0, BOOST_CONTAINER_MAX_CONSTRUCTOR_PARAMETERS) #include BOOST_PP_LOCAL_ITERATE() #endif //#ifdef BOOST_CONTAINER_PERFECT_FORWARDING //! Effects: Erases the element pointed to by position. //! //! Returns: Returns an iterator pointing to the element immediately //! following q prior to the element being erased. If no such element exists, //! returns end(). //! //! Complexity: Linear to the elements with keys bigger than position //! //! Note: Invalidates elements with keys //! not less than the erased element. iterator erase(const_iterator position) { return container_detail::force_copy (m_flat_tree.erase(container_detail::force_copy(position))); } //! Effects: Erases all elements in the container with key equivalent to x. //! //! Returns: Returns the number of erased elements. //! //! Complexity: Logarithmic search time plus erasure time //! linear to the elements with bigger keys. size_type erase(const key_type& x) { return m_flat_tree.erase(x); } //! Effects: Erases all the elements in the range [first, last). //! //! Returns: Returns last. //! //! Complexity: size()*N where N is the distance from first to last. //! //! Complexity: Logarithmic search time plus erasure time //! linear to the elements with bigger keys. iterator erase(const_iterator first, const_iterator last) { return container_detail::force_copy( m_flat_tree.erase( container_detail::force_copy(first) , container_detail::force_copy(last))); } //! Effects: erase(a.begin(),a.end()). //! //! Postcondition: size() == 0. //! //! Complexity: linear in size(). void clear() { m_flat_tree.clear(); } //! Effects: Tries to deallocate the excess of memory created // with previous allocations. The size of the vector is unchanged //! //! Throws: If memory allocation throws, or T's copy constructor throws. //! //! Complexity: Linear to size(). void shrink_to_fit() { m_flat_tree.shrink_to_fit(); } //! Returns: An iterator pointing to an element with the key //! equivalent to x, or end() if such an element is not found. //! //! Complexity: Logarithmic. iterator find(const key_type& x) { return container_detail::force_copy(m_flat_tree.find(x)); } //! Returns: A const_iterator pointing to an element with the key //! equivalent to x, or end() if such an element is not found. //! //! Complexity: Logarithmic.s const_iterator find(const key_type& x) const { return container_detail::force_copy(m_flat_tree.find(x)); } //! Returns: The number of elements with key equivalent to x. //! //! Complexity: log(size())+count(k) size_type count(const key_type& x) const { return m_flat_tree.find(x) == m_flat_tree.end() ? 0 : 1; } //! Returns: An iterator pointing to the first element with key not less //! than k, or a.end() if such an element is not found. //! //! Complexity: Logarithmic iterator lower_bound(const key_type& x) { return container_detail::force_copy(m_flat_tree.lower_bound(x)); } //! Returns: A const iterator pointing to the first element with key not //! less than k, or a.end() if such an element is not found. //! //! Complexity: Logarithmic const_iterator lower_bound(const key_type& x) const { return container_detail::force_copy(m_flat_tree.lower_bound(x)); } //! Returns: An iterator pointing to the first element with key not less //! than x, or end() if such an element is not found. //! //! Complexity: Logarithmic iterator upper_bound(const key_type& x) { return container_detail::force_copy(m_flat_tree.upper_bound(x)); } //! Returns: A const iterator pointing to the first element with key not //! less than x, or end() if such an element is not found. //! //! Complexity: Logarithmic const_iterator upper_bound(const key_type& x) const { return container_detail::force_copy(m_flat_tree.upper_bound(x)); } //! Effects: Equivalent to std::make_pair(this->lower_bound(k), this->upper_bound(k)). //! //! Complexity: Logarithmic std::pair equal_range(const key_type& x) { return container_detail::force_copy >(m_flat_tree.equal_range(x)); } //! Effects: Equivalent to std::make_pair(this->lower_bound(k), this->upper_bound(k)). //! //! Complexity: Logarithmic std::pair equal_range(const key_type& x) const { return container_detail::force_copy >(m_flat_tree.equal_range(x)); } //! Effects: Number of elements for which memory has been allocated. //! capacity() is always greater than or equal to size(). //! //! Throws: Nothing. //! //! Complexity: Constant. size_type capacity() const { return m_flat_tree.capacity(); } //! Effects: If n is less than or equal to capacity(), this call has no //! effect. Otherwise, it is a request for allocation of additional memory. //! If the request is successful, then capacity() is greater than or equal to //! n; otherwise, capacity() is unchanged. In either case, size() is unchanged. //! //! Throws: If memory allocation allocation throws or T's copy constructor throws. //! //! Note: If capacity() is less than "count", iterators and references to //! to values might be invalidated. void reserve(size_type count) { m_flat_tree.reserve(count); } /// @cond template friend bool operator== (const flat_map&, const flat_map&); template friend bool operator< (const flat_map&, const flat_map&); private: mapped_type &priv_subscript(const key_type& k) { iterator i = lower_bound(k); // i->first is greater than or equivalent to k. if (i == end() || key_comp()(k, (*i).first)){ container_detail::value_init m; i = insert(i, impl_value_type(k, ::boost::move(m.m_t))); } return (*i).second; } mapped_type &priv_subscript(BOOST_RV_REF(key_type) mk) { key_type &k = mk; iterator i = lower_bound(k); // i->first is greater than or equivalent to k. if (i == end() || key_comp()(k, (*i).first)){ container_detail::value_init m; i = insert(i, impl_value_type(boost::move(k), ::boost::move(m.m_t))); } return (*i).second; } /// @endcond }; template inline bool operator==(const flat_map& x, const flat_map& y) { return x.m_flat_tree == y.m_flat_tree; } template inline bool operator<(const flat_map& x, const flat_map& y) { return x.m_flat_tree < y.m_flat_tree; } template inline bool operator!=(const flat_map& x, const flat_map& y) { return !(x == y); } template inline bool operator>(const flat_map& x, const flat_map& y) { return y < x; } template inline bool operator<=(const flat_map& x, const flat_map& y) { return !(y < x); } template inline bool operator>=(const flat_map& x, const flat_map& y) { return !(x < y); } template inline void swap(flat_map& x, flat_map& y) { x.swap(y); } /// @cond } //namespace container { /* //!has_trivial_destructor_after_move<> == true_type //!specialization for optimizations template struct has_trivial_destructor_after_move > { static const bool value = has_trivial_destructor::value && has_trivial_destructor::value; }; */ namespace container { // Forward declaration of operators < and ==, needed for friend declaration. #ifdef BOOST_CONTAINER_DOXYGEN_INVOKED template >, class A = std::allocator > #else template #endif class flat_multimap; template inline bool operator==(const flat_multimap& x, const flat_multimap& y); template inline bool operator<(const flat_multimap& x, const flat_multimap& y); /// @endcond //! A flat_multimap is a kind of associative container that supports equivalent keys //! (possibly containing multiple copies of the same key value) and provides for //! fast retrieval of values of another type T based on the keys. The flat_multimap //! class supports random-access iterators. //! //! A flat_multimap satisfies all of the requirements of a container and of a reversible //! container and of an associative container. For a //! flat_multimap the key_type is Key and the value_type is std::pair //! (unlike std::multimap which value_type is std::pair<const Key, T>). //! //! Pred is the ordering function for Keys (e.g. std::less). //! //! A is the allocator to allocate the value_types //! (e.g. allocator< std::pair >). #ifdef BOOST_CONTAINER_DOXYGEN_INVOKED template >, class A = std::allocator > #else template #endif class flat_multimap { /// @cond private: BOOST_COPYABLE_AND_MOVABLE(flat_multimap) typedef container_detail::flat_tree, container_detail::select1st< std::pair >, Pred, A> tree_t; //This is the real tree stored here. It's based on a movable pair typedef container_detail::flat_tree, container_detail::select1st >, Pred, typename allocator_traits::template portable_rebind_alloc >::type> impl_tree_t; impl_tree_t m_flat_tree; // flat tree representing flat_map typedef typename impl_tree_t::value_type impl_value_type; typedef typename impl_tree_t::pointer impl_pointer; typedef typename impl_tree_t::const_pointer impl_const_pointer; typedef typename impl_tree_t::reference impl_reference; typedef typename impl_tree_t::const_reference impl_const_reference; typedef typename impl_tree_t::value_compare impl_value_compare; typedef typename impl_tree_t::iterator impl_iterator; typedef typename impl_tree_t::const_iterator impl_const_iterator; typedef typename impl_tree_t::reverse_iterator impl_reverse_iterator; typedef typename impl_tree_t::const_reverse_iterator impl_const_reverse_iterator; typedef typename impl_tree_t::allocator_type impl_allocator_type; typedef allocator_traits allocator_traits_type; /// @endcond public: // typedefs: typedef Key key_type; typedef T mapped_type; typedef Pred key_compare; typedef typename std::pair value_type; typedef typename allocator_traits_type::pointer pointer; typedef typename allocator_traits_type::const_pointer const_pointer; typedef typename allocator_traits_type::reference reference; typedef typename allocator_traits_type::const_reference const_reference; typedef typename impl_tree_t::size_type size_type; typedef typename impl_tree_t::difference_type difference_type; typedef container_detail::flat_tree_value_compare < Pred , container_detail::select1st< std::pair > , std::pair > value_compare; typedef typename container_detail:: get_flat_tree_iterators::iterator iterator; typedef typename container_detail:: get_flat_tree_iterators::const_iterator const_iterator; typedef typename container_detail:: get_flat_tree_iterators ::reverse_iterator reverse_iterator; typedef typename container_detail:: get_flat_tree_iterators ::const_reverse_iterator const_reverse_iterator; typedef A allocator_type; //Non-standard extension typedef A stored_allocator_type; //!Standard extension for C++03 compilers with non-movable std::pair typedef impl_value_type movable_value_type; //! Effects: Default constructs an empty flat_map. //! //! Complexity: Constant. flat_multimap() : m_flat_tree() {} //! Effects: Constructs an empty flat_multimap using the specified comparison //! object and allocator. //! //! Complexity: Constant. explicit flat_multimap(const Pred& comp, const allocator_type& a = allocator_type()) : m_flat_tree(comp, container_detail::force(a)) { } //! Effects: Constructs an empty flat_multimap using the specified comparison object //! and allocator, and inserts elements from the range [first ,last ). //! //! Complexity: Linear in N if the range [first ,last ) is already sorted using //! comp and otherwise N logN, where N is last - first. template flat_multimap(InputIterator first, InputIterator last, const Pred& comp = Pred(), const allocator_type& a = allocator_type()) : m_flat_tree(comp, container_detail::force(a)) { m_flat_tree.insert_equal(first, last); } //! Effects: Constructs an empty flat_multimap using the specified comparison object and //! allocator, and inserts elements from the ordered range [first ,last). This function //! is more efficient than the normal range creation for ordered ranges. //! //! Requires: [first ,last) must be ordered according to the predicate. //! //! Complexity: Linear in N. //! //! Note: Non-standard extension. template flat_multimap(ordered_range_t, InputIterator first, InputIterator last, const Pred& comp = Pred(), const allocator_type& a = allocator_type()) : m_flat_tree(ordered_range, first, last, comp, a) {} //! Effects: Copy constructs a flat_multimap. //! //! Complexity: Linear in x.size(). flat_multimap(const flat_multimap& x) : m_flat_tree(x.m_flat_tree) { } //! Effects: Move constructs a flat_multimap. Constructs *this using x's resources. //! //! Complexity: Constant. //! //! Postcondition: x is emptied. flat_multimap(BOOST_RV_REF(flat_multimap) x) : m_flat_tree(boost::move(x.m_flat_tree)) { } //! Effects: Copy constructs a flat_multimap using the specified allocator. //! //! Complexity: Linear in x.size(). flat_multimap(const flat_multimap& x, const allocator_type &a) : m_flat_tree(x.m_flat_tree, a) {} //! Effects: Move constructs a flat_multimap using the specified allocator. //! Constructs *this using x's resources. //! //! Complexity: Constant if a == x.get_allocator(), linear otherwise. flat_multimap(BOOST_RV_REF(flat_multimap) x, const allocator_type &a) : m_flat_tree(boost::move(x.m_flat_tree), a) { } //! Effects: Makes *this a copy of x. //! //! Complexity: Linear in x.size(). flat_multimap& operator=(BOOST_COPY_ASSIGN_REF(flat_multimap) x) { m_flat_tree = x.m_flat_tree; return *this; } //! Effects: this->swap(x.get()). //! //! Complexity: Constant. flat_multimap& operator=(BOOST_RV_REF(flat_multimap) mx) { m_flat_tree = boost::move(mx.m_flat_tree); return *this; } //! Effects: Returns the comparison object out //! of which a was constructed. //! //! Complexity: Constant. key_compare key_comp() const { return container_detail::force_copy(m_flat_tree.key_comp()); } //! Effects: Returns an object of value_compare constructed out //! of the comparison object. //! //! Complexity: Constant. value_compare value_comp() const { return value_compare(container_detail::force_copy(m_flat_tree.key_comp())); } //! Effects: Returns a copy of the Allocator that //! was passed to the object's constructor. //! //! Complexity: Constant. allocator_type get_allocator() const { return container_detail::force_copy(m_flat_tree.get_allocator()); } const stored_allocator_type &get_stored_allocator() const { return container_detail::force(m_flat_tree.get_stored_allocator()); } stored_allocator_type &get_stored_allocator() { return container_detail::force(m_flat_tree.get_stored_allocator()); } //! Effects: Returns an iterator to the first element contained in the container. //! //! Throws: Nothing. //! //! Complexity: Constant. iterator begin() { return container_detail::force_copy(m_flat_tree.begin()); } //! Effects: Returns a const_iterator to the first element contained in the container. //! //! Throws: Nothing. //! //! Complexity: Constant. const_iterator begin() const { return container_detail::force_copy(m_flat_tree.begin()); } //! Effects: Returns an iterator to the end of the container. //! //! Throws: Nothing. //! //! Complexity: Constant. iterator end() { return container_detail::force_copy(m_flat_tree.end()); } //! Effects: Returns a const_iterator to the end of the container. //! //! Throws: Nothing. //! //! Complexity: Constant. const_iterator end() const { return container_detail::force_copy(m_flat_tree.end()); } //! Effects: Returns a reverse_iterator pointing to the beginning //! of the reversed container. //! //! Throws: Nothing. //! //! Complexity: Constant. reverse_iterator rbegin() { return container_detail::force_copy(m_flat_tree.rbegin()); } //! Effects: Returns a const_reverse_iterator pointing to the beginning //! of the reversed container. //! //! Throws: Nothing. //! //! Complexity: Constant. const_reverse_iterator rbegin() const { return container_detail::force_copy(m_flat_tree.rbegin()); } //! Effects: Returns a reverse_iterator pointing to the end //! of the reversed container. //! //! Throws: Nothing. //! //! Complexity: Constant. reverse_iterator rend() { return container_detail::force_copy(m_flat_tree.rend()); } //! Effects: Returns a const_reverse_iterator pointing to the end //! of the reversed container. //! //! Throws: Nothing. //! //! Complexity: Constant. const_reverse_iterator rend() const { return container_detail::force_copy(m_flat_tree.rend()); } //! Effects: Returns a const_iterator to the first element contained in the container. //! //! Throws: Nothing. //! //! Complexity: Constant. const_iterator cbegin() const { return container_detail::force_copy(m_flat_tree.cbegin()); } //! Effects: Returns a const_iterator to the end of the container. //! //! Throws: Nothing. //! //! Complexity: Constant. const_iterator cend() const { return container_detail::force_copy(m_flat_tree.cend()); } //! Effects: Returns a const_reverse_iterator pointing to the beginning //! of the reversed container. //! //! Throws: Nothing. //! //! Complexity: Constant. const_reverse_iterator crbegin() const { return container_detail::force_copy(m_flat_tree.crbegin()); } //! Effects: Returns a const_reverse_iterator pointing to the end //! of the reversed container. //! //! Throws: Nothing. //! //! Complexity: Constant. const_reverse_iterator crend() const { return container_detail::force_copy(m_flat_tree.crend()); } //! Effects: Returns true if the container contains no elements. //! //! Throws: Nothing. //! //! Complexity: Constant. bool empty() const { return m_flat_tree.empty(); } //! Effects: Returns the number of the elements contained in the container. //! //! Throws: Nothing. //! //! Complexity: Constant. size_type size() const { return m_flat_tree.size(); } //! Effects: Returns the largest possible size of the container. //! //! Throws: Nothing. //! //! Complexity: Constant. size_type max_size() const { return m_flat_tree.max_size(); } //! Effects: Swaps the contents of *this and x. //! //! Throws: Nothing. //! //! Complexity: Constant. void swap(flat_multimap& x) { m_flat_tree.swap(x.m_flat_tree); } //! Effects: Inserts x and returns the iterator pointing to the //! newly inserted element. //! //! Complexity: Logarithmic search time plus linear insertion //! to the elements with bigger keys than x. //! //! Note: If an element is inserted it might invalidate elements. iterator insert(const value_type& x) { return container_detail::force_copy( m_flat_tree.insert_equal(container_detail::force(x))); } //! Effects: Inserts a new value move-constructed from x and returns //! the iterator pointing to the newly inserted element. //! //! Complexity: Logarithmic search time plus linear insertion //! to the elements with bigger keys than x. //! //! Note: If an element is inserted it might invalidate elements. iterator insert(BOOST_RV_REF(value_type) x) { return container_detail::force_copy(m_flat_tree.insert_equal(boost::move(x))); } //! Effects: Inserts a new value move-constructed from x and returns //! the iterator pointing to the newly inserted element. //! //! Complexity: Logarithmic search time plus linear insertion //! to the elements with bigger keys than x. //! //! Note: If an element is inserted it might invalidate elements. iterator insert(BOOST_RV_REF(impl_value_type) x) { return container_detail::force_copy(m_flat_tree.insert_equal(boost::move(x))); } //! Effects: Inserts a copy of x in the container. //! p is a hint pointing to where the insert should start to search. //! //! Returns: An iterator pointing to the element with key equivalent //! to the key of x. //! //! Complexity: Logarithmic search time (constant time if the value //! is to be inserted before p) plus linear insertion //! to the elements with bigger keys than x. //! //! Note: If an element is inserted it might invalidate elements. iterator insert(const_iterator position, const value_type& x) { return container_detail::force_copy (m_flat_tree.insert_equal( container_detail::force_copy(position) , container_detail::force(x))); } //! Effects: Inserts a value move constructed from x in the container. //! p is a hint pointing to where the insert should start to search. //! //! Returns: An iterator pointing to the element with key equivalent //! to the key of x. //! //! Complexity: Logarithmic search time (constant time if the value //! is to be inserted before p) plus linear insertion //! to the elements with bigger keys than x. //! //! Note: If an element is inserted it might invalidate elements. iterator insert(const_iterator position, BOOST_RV_REF(value_type) x) { return container_detail::force_copy (m_flat_tree.insert_equal(container_detail::force_copy(position) , boost::move(x))); } //! Effects: Inserts a value move constructed from x in the container. //! p is a hint pointing to where the insert should start to search. //! //! Returns: An iterator pointing to the element with key equivalent //! to the key of x. //! //! Complexity: Logarithmic search time (constant time if the value //! is to be inserted before p) plus linear insertion //! to the elements with bigger keys than x. //! //! Note: If an element is inserted it might invalidate elements. iterator insert(const_iterator position, BOOST_RV_REF(impl_value_type) x) { return container_detail::force_copy( m_flat_tree.insert_equal(container_detail::force_copy(position), boost::move(x))); } //! Requires: first, last are not iterators into *this. //! //! Effects: inserts each element from the range [first,last) . //! //! Complexity: At most N log(size()+N) (N is the distance from first to last) //! search time plus N*size() insertion time. //! //! Note: If an element is inserted it might invalidate elements. template void insert(InputIterator first, InputIterator last) { m_flat_tree.insert_equal(first, last); } //! Requires: first, last are not iterators into *this. //! //! Requires: [first ,last) must be ordered according to the predicate. //! //! Effects: inserts each element from the range [first,last) if and only //! if there is no element with key equivalent to the key of that element. This //! function is more efficient than the normal range creation for ordered ranges. //! //! Complexity: At most N log(size()+N) (N is the distance from first to last) //! search time plus N*size() insertion time. //! //! Note: If an element is inserted it might invalidate elements. template void insert(ordered_range_t, InputIterator first, InputIterator last) { m_flat_tree.insert_equal(ordered_range, first, last); } #if defined(BOOST_CONTAINER_PERFECT_FORWARDING) || defined(BOOST_CONTAINER_DOXYGEN_INVOKED) //! Effects: Inserts an object of type T constructed with //! std::forward(args)... and returns the iterator pointing to the //! newly inserted element. //! //! Complexity: Logarithmic search time plus linear insertion //! to the elements with bigger keys than x. //! //! Note: If an element is inserted it might invalidate elements. template iterator emplace(Args&&... args) { return container_detail::force_copy(m_flat_tree.emplace_equal(boost::forward(args)...)); } //! Effects: Inserts an object of type T constructed with //! std::forward(args)... in the container. //! p is a hint pointing to where the insert should start to search. //! //! Returns: An iterator pointing to the element with key equivalent //! to the key of x. //! //! Complexity: Logarithmic search time (constant time if the value //! is to be inserted before p) plus linear insertion //! to the elements with bigger keys than x. //! //! Note: If an element is inserted it might invalidate elements. template iterator emplace_hint(const_iterator hint, Args&&... args) { return container_detail::force_copy(m_flat_tree.emplace_hint_equal (container_detail::force_copy(hint), boost::forward(args)...)); } #else //#ifdef BOOST_CONTAINER_PERFECT_FORWARDING #define BOOST_PP_LOCAL_MACRO(n) \ BOOST_PP_EXPR_IF(n, template<) BOOST_PP_ENUM_PARAMS(n, class P) BOOST_PP_EXPR_IF(n, >) \ iterator emplace(BOOST_PP_ENUM(n, BOOST_CONTAINER_PP_PARAM_LIST, _)) \ { return container_detail::force_copy(m_flat_tree.emplace_equal \ (BOOST_PP_ENUM(n, BOOST_CONTAINER_PP_PARAM_FORWARD, _))); } \ \ BOOST_PP_EXPR_IF(n, template<) BOOST_PP_ENUM_PARAMS(n, class P) BOOST_PP_EXPR_IF(n, >) \ iterator emplace_hint(const_iterator hint \ BOOST_PP_ENUM_TRAILING(n, BOOST_CONTAINER_PP_PARAM_LIST, _)) \ { return container_detail::force_copy(m_flat_tree.emplace_hint_equal \ (container_detail::force_copy(hint) \ BOOST_PP_ENUM_TRAILING(n, BOOST_CONTAINER_PP_PARAM_FORWARD, _))); } \ //! #define BOOST_PP_LOCAL_LIMITS (0, BOOST_CONTAINER_MAX_CONSTRUCTOR_PARAMETERS) #include BOOST_PP_LOCAL_ITERATE() #endif //#ifdef BOOST_CONTAINER_PERFECT_FORWARDING //! Effects: Erases the element pointed to by position. //! //! Returns: Returns an iterator pointing to the element immediately //! following q prior to the element being erased. If no such element exists, //! returns end(). //! //! Complexity: Linear to the elements with keys bigger than position //! //! Note: Invalidates elements with keys //! not less than the erased element. iterator erase(const_iterator position) { return container_detail::force_copy( m_flat_tree.erase(container_detail::force_copy(position))); } //! Effects: Erases all elements in the container with key equivalent to x. //! //! Returns: Returns the number of erased elements. //! //! Complexity: Logarithmic search time plus erasure time //! linear to the elements with bigger keys. size_type erase(const key_type& x) { return m_flat_tree.erase(x); } //! Effects: Erases all the elements in the range [first, last). //! //! Returns: Returns last. //! //! Complexity: size()*N where N is the distance from first to last. //! //! Complexity: Logarithmic search time plus erasure time //! linear to the elements with bigger keys. iterator erase(const_iterator first, const_iterator last) { return container_detail::force_copy (m_flat_tree.erase( container_detail::force_copy(first) , container_detail::force_copy(last))); } //! Effects: erase(a.begin(),a.end()). //! //! Postcondition: size() == 0. //! //! Complexity: linear in size(). void clear() { m_flat_tree.clear(); } //! Effects: Tries to deallocate the excess of memory created // with previous allocations. The size of the vector is unchanged //! //! Throws: If memory allocation throws, or T's copy constructor throws. //! //! Complexity: Linear to size(). void shrink_to_fit() { m_flat_tree.shrink_to_fit(); } //! Returns: An iterator pointing to an element with the key //! equivalent to x, or end() if such an element is not found. //! //! Complexity: Logarithmic. iterator find(const key_type& x) { return container_detail::force_copy(m_flat_tree.find(x)); } //! Returns: An const_iterator pointing to an element with the key //! equivalent to x, or end() if such an element is not found. //! //! Complexity: Logarithmic. const_iterator find(const key_type& x) const { return container_detail::force_copy(m_flat_tree.find(x)); } //! Returns: The number of elements with key equivalent to x. //! //! Complexity: log(size())+count(k) size_type count(const key_type& x) const { return m_flat_tree.count(x); } //! Returns: An iterator pointing to the first element with key not less //! than k, or a.end() if such an element is not found. //! //! Complexity: Logarithmic iterator lower_bound(const key_type& x) {return container_detail::force_copy(m_flat_tree.lower_bound(x)); } //! Returns: A const iterator pointing to the first element with key //! not less than k, or a.end() if such an element is not found. //! //! Complexity: Logarithmic const_iterator lower_bound(const key_type& x) const { return container_detail::force_copy(m_flat_tree.lower_bound(x)); } //! Returns: An iterator pointing to the first element with key not less //! than x, or end() if such an element is not found. //! //! Complexity: Logarithmic iterator upper_bound(const key_type& x) {return container_detail::force_copy(m_flat_tree.upper_bound(x)); } //! Returns: A const iterator pointing to the first element with key //! not less than x, or end() if such an element is not found. //! //! Complexity: Logarithmic const_iterator upper_bound(const key_type& x) const { return container_detail::force_copy(m_flat_tree.upper_bound(x)); } //! Effects: Equivalent to std::make_pair(this->lower_bound(k), this->upper_bound(k)). //! //! Complexity: Logarithmic std::pair equal_range(const key_type& x) { return container_detail::force_copy >(m_flat_tree.equal_range(x)); } //! Effects: Equivalent to std::make_pair(this->lower_bound(k), this->upper_bound(k)). //! //! Complexity: Logarithmic std::pair equal_range(const key_type& x) const { return container_detail::force_copy >(m_flat_tree.equal_range(x)); } //! Effects: Number of elements for which memory has been allocated. //! capacity() is always greater than or equal to size(). //! //! Throws: Nothing. //! //! Complexity: Constant. size_type capacity() const { return m_flat_tree.capacity(); } //! Effects: If n is less than or equal to capacity(), this call has no //! effect. Otherwise, it is a request for allocation of additional memory. //! If the request is successful, then capacity() is greater than or equal to //! n; otherwise, capacity() is unchanged. In either case, size() is unchanged. //! //! Throws: If memory allocation allocation throws or T's copy constructor throws. //! //! Note: If capacity() is less than "count", iterators and references to //! to values might be invalidated. void reserve(size_type count) { m_flat_tree.reserve(count); } /// @cond template friend bool operator== (const flat_multimap& x, const flat_multimap& y); template friend bool operator< (const flat_multimap& x, const flat_multimap& y); /// @endcond }; template inline bool operator==(const flat_multimap& x, const flat_multimap& y) { return x.m_flat_tree == y.m_flat_tree; } template inline bool operator<(const flat_multimap& x, const flat_multimap& y) { return x.m_flat_tree < y.m_flat_tree; } template inline bool operator!=(const flat_multimap& x, const flat_multimap& y) { return !(x == y); } template inline bool operator>(const flat_multimap& x, const flat_multimap& y) { return y < x; } template inline bool operator<=(const flat_multimap& x, const flat_multimap& y) { return !(y < x); } template inline bool operator>=(const flat_multimap& x, const flat_multimap& y) { return !(x < y); } template inline void swap(flat_multimap& x, flat_multimap& y) { x.swap(y); } }} /// @cond namespace boost { /* //!has_trivial_destructor_after_move<> == true_type //!specialization for optimizations template struct has_trivial_destructor_after_move< boost::container::flat_multimap > { static const bool value = has_trivial_destructor::value && has_trivial_destructor::value; }; */ } //namespace boost { /// @endcond #include #endif /* BOOST_CONTAINER_FLAT_MAP_HPP */