////////////////////////////////////////////////////////////////////////////// // // (C) Copyright Ion Gaztanaga 2005-2012. Distributed under the Boost // Software License, Version 1.0. (See accompanying file // LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt) // // See http://www.boost.org/libs/container for documentation. // ////////////////////////////////////////////////////////////////////////////// #ifndef BOOST_CONTAINER_FLAT_SET_HPP #define BOOST_CONTAINER_FLAT_SET_HPP #if (defined _MSC_VER) && (_MSC_VER >= 1200) # pragma once #endif #include #include #include #include #include #include #include #include #include #ifdef BOOST_CONTAINER_DOXYGEN_INVOKED namespace boost { namespace container { #else namespace boost { namespace container { #endif /// @cond // Forward declarations of operators < and ==, needed for friend declaration. #ifdef BOOST_CONTAINER_DOXYGEN_INVOKED template , class A = std::allocator > #else template #endif class flat_set; template inline bool operator==(const flat_set& x, const flat_set& y); template inline bool operator<(const flat_set& x, const flat_set& y); /// @endcond //! flat_set is a Sorted Associative Container that stores objects of type Key. //! flat_set is a Simple Associative Container, meaning that its value type, //! as well as its key type, is Key. It is also a Unique Associative Container, //! meaning that no two elements are the same. //! //! flat_set is similar to std::set but it's implemented like an ordered vector. //! This means that inserting a new element into a flat_set invalidates //! previous iterators and references //! //! Erasing an element of a flat_set invalidates iterators and references //! pointing to elements that come after (their keys are bigger) the erased element. #ifdef BOOST_CONTAINER_DOXYGEN_INVOKED template , class A = std::allocator > #else template #endif class flat_set { /// @cond private: BOOST_COPYABLE_AND_MOVABLE(flat_set) typedef container_detail::flat_tree, Pred, A> tree_t; tree_t m_flat_tree; // flat tree representing flat_set typedef typename container_detail:: move_const_ref_type::type insert_const_ref_type; /// @endcond public: // typedefs: typedef typename tree_t::key_type key_type; typedef typename tree_t::value_type value_type; typedef typename tree_t::pointer pointer; typedef typename tree_t::const_pointer const_pointer; typedef typename tree_t::reference reference; typedef typename tree_t::const_reference const_reference; typedef typename tree_t::key_compare key_compare; typedef typename tree_t::value_compare value_compare; typedef typename tree_t::iterator iterator; typedef typename tree_t::const_iterator const_iterator; typedef typename tree_t::reverse_iterator reverse_iterator; typedef typename tree_t::const_reverse_iterator const_reverse_iterator; typedef typename tree_t::size_type size_type; typedef typename tree_t::difference_type difference_type; typedef typename tree_t::allocator_type allocator_type; typedef typename tree_t::stored_allocator_type stored_allocator_type; //! Effects: Default constructs an empty flat_set. //! //! Complexity: Constant. explicit flat_set() : m_flat_tree() {} //! Effects: Constructs an empty flat_set using the specified //! comparison object and allocator. //! //! Complexity: Constant. explicit flat_set(const Pred& comp, const allocator_type& a = allocator_type()) : m_flat_tree(comp, a) {} //! Effects: Constructs an empty set using the specified comparison object and //! allocator, and inserts elements from the range [first ,last ). //! //! Complexity: Linear in N if the range [first ,last ) is already sorted using //! comp and otherwise N logN, where N is last - first. template flat_set(InputIterator first, InputIterator last, const Pred& comp = Pred(), const allocator_type& a = allocator_type()) : m_flat_tree(comp, a) { m_flat_tree.insert_unique(first, last); } //! Effects: Constructs an empty flat_set using the specified comparison object and //! allocator, and inserts elements from the ordered unique range [first ,last). This function //! is more efficient than the normal range creation for ordered ranges. //! //! Requires: [first ,last) must be ordered according to the predicate and must be //! unique values. //! //! Complexity: Linear in N. //! //! Note: Non-standard extension. template flat_set(ordered_unique_range_t, InputIterator first, InputIterator last, const Pred& comp = Pred(), const allocator_type& a = allocator_type()) : m_flat_tree(ordered_range, first, last, comp, a) {} //! Effects: Copy constructs a set. //! //! Complexity: Linear in x.size(). flat_set(const flat_set& x) : m_flat_tree(x.m_flat_tree) {} //! Effects: Move constructs a set. Constructs *this using x's resources. //! //! Complexity: Constant. //! //! Postcondition: x is emptied. flat_set(BOOST_RV_REF(flat_set) mx) : m_flat_tree(boost::move(mx.m_flat_tree)) {} //! Effects: Copy constructs a set using the specified allocator. //! //! Complexity: Linear in x.size(). flat_set(const flat_set& x, const allocator_type &a) : m_flat_tree(x.m_flat_tree, a) {} //! Effects: Move constructs a set using the specified allocator. //! Constructs *this using x's resources. //! //! Complexity: Constant if a == mx.get_allocator(), linear otherwise flat_set(BOOST_RV_REF(flat_set) mx, const allocator_type &a) : m_flat_tree(boost::move(mx.m_flat_tree), a) {} //! Effects: Makes *this a copy of x. //! //! Complexity: Linear in x.size(). flat_set& operator=(BOOST_COPY_ASSIGN_REF(flat_set) x) { m_flat_tree = x.m_flat_tree; return *this; } //! Effects: Makes *this a copy of the previous value of xx. //! //! Complexity: Linear in x.size(). flat_set& operator=(BOOST_RV_REF(flat_set) mx) { m_flat_tree = boost::move(mx.m_flat_tree); return *this; } //! Effects: Returns the comparison object out //! of which a was constructed. //! //! Complexity: Constant. key_compare key_comp() const { return m_flat_tree.key_comp(); } //! Effects: Returns an object of value_compare constructed out //! of the comparison object. //! //! Complexity: Constant. value_compare value_comp() const { return m_flat_tree.key_comp(); } //! Effects: Returns a copy of the Allocator that //! was passed to the object's constructor. //! //! Complexity: Constant. allocator_type get_allocator() const { return m_flat_tree.get_allocator(); } const stored_allocator_type &get_stored_allocator() const { return m_flat_tree.get_stored_allocator(); } stored_allocator_type &get_stored_allocator() { return m_flat_tree.get_stored_allocator(); } //! Effects: Returns an iterator to the first element contained in the container. //! //! Throws: Nothing. //! //! Complexity: Constant. iterator begin() { return m_flat_tree.begin(); } //! Effects: Returns a const_iterator to the first element contained in the container. //! //! Throws: Nothing. //! //! Complexity: Constant. const_iterator begin() const { return m_flat_tree.begin(); } //! Effects: Returns a const_iterator to the first element contained in the container. //! //! Throws: Nothing. //! //! Complexity: Constant. const_iterator cbegin() const { return m_flat_tree.cbegin(); } //! Effects: Returns an iterator to the end of the container. //! //! Throws: Nothing. //! //! Complexity: Constant. iterator end() { return m_flat_tree.end(); } //! Effects: Returns a const_iterator to the end of the container. //! //! Throws: Nothing. //! //! Complexity: Constant. const_iterator end() const { return m_flat_tree.end(); } //! Effects: Returns a const_iterator to the end of the container. //! //! Throws: Nothing. //! //! Complexity: Constant. const_iterator cend() const { return m_flat_tree.cend(); } //! Effects: Returns a reverse_iterator pointing to the beginning //! of the reversed container. //! //! Throws: Nothing. //! //! Complexity: Constant. reverse_iterator rbegin() { return m_flat_tree.rbegin(); } //! Effects: Returns a const_reverse_iterator pointing to the beginning //! of the reversed container. //! //! Throws: Nothing. //! //! Complexity: Constant. const_reverse_iterator rbegin() const { return m_flat_tree.rbegin(); } //! Effects: Returns a const_reverse_iterator pointing to the beginning //! of the reversed container. //! //! Throws: Nothing. //! //! Complexity: Constant. const_reverse_iterator crbegin() const { return m_flat_tree.crbegin(); } //! Effects: Returns a reverse_iterator pointing to the end //! of the reversed container. //! //! Throws: Nothing. //! //! Complexity: Constant. reverse_iterator rend() { return m_flat_tree.rend(); } //! Effects: Returns a const_reverse_iterator pointing to the end //! of the reversed container. //! //! Throws: Nothing. //! //! Complexity: Constant. const_reverse_iterator rend() const { return m_flat_tree.rend(); } //! Effects: Returns a const_reverse_iterator pointing to the end //! of the reversed container. //! //! Throws: Nothing. //! //! Complexity: Constant. const_reverse_iterator crend() const { return m_flat_tree.crend(); } //! Effects: Returns true if the container contains no elements. //! //! Throws: Nothing. //! //! Complexity: Constant. bool empty() const { return m_flat_tree.empty(); } //! Effects: Returns the number of the elements contained in the container. //! //! Throws: Nothing. //! //! Complexity: Constant. size_type size() const { return m_flat_tree.size(); } //! Effects: Returns the largest possible size of the container. //! //! Throws: Nothing. //! //! Complexity: Constant. size_type max_size() const { return m_flat_tree.max_size(); } //! Effects: Swaps the contents of *this and x. //! //! Throws: Nothing. //! //! Complexity: Constant. void swap(flat_set& x) { m_flat_tree.swap(x.m_flat_tree); } //! Effects: Inserts x if and only if there is no element in the container //! with key equivalent to the key of x. //! //! Returns: The bool component of the returned pair is true if and only //! if the insertion takes place, and the iterator component of the pair //! points to the element with key equivalent to the key of x. //! //! Complexity: Logarithmic search time plus linear insertion //! to the elements with bigger keys than x. //! //! Note: If an element is inserted it might invalidate elements. std::pair insert(insert_const_ref_type x) { return priv_insert(x); } #if defined(BOOST_NO_RVALUE_REFERENCES) && !defined(BOOST_CONTAINER_DOXYGEN_INVOKED) std::pair insert(T &x) { return this->insert(const_cast(x)); } template std::pair insert(const U &u, typename container_detail::enable_if_c::value && !::boost::has_move_emulation_enabled::value >::type* =0) { return priv_insert(u); } #endif //! Effects: Inserts a new value_type move constructed from the pair if and //! only if there is no element in the container with key equivalent to the key of x. //! //! Returns: The bool component of the returned pair is true if and only //! if the insertion takes place, and the iterator component of the pair //! points to the element with key equivalent to the key of x. //! //! Complexity: Logarithmic search time plus linear insertion //! to the elements with bigger keys than x. //! //! Note: If an element is inserted it might invalidate elements. std::pair insert(BOOST_RV_REF(value_type) x) { return m_flat_tree.insert_unique(boost::move(x)); } //! Effects: Inserts a copy of x in the container if and only if there is //! no element in the container with key equivalent to the key of x. //! p is a hint pointing to where the insert should start to search. //! //! Returns: An iterator pointing to the element with key equivalent //! to the key of x. //! //! Complexity: Logarithmic search time (constant if x is inserted //! right before p) plus insertion linear to the elements with bigger keys than x. //! //! Note: If an element is inserted it might invalidate elements. iterator insert(const_iterator p, insert_const_ref_type x) { return priv_insert(p, x); } #if defined(BOOST_NO_RVALUE_REFERENCES) && !defined(BOOST_CONTAINER_DOXYGEN_INVOKED) iterator insert(const_iterator position, T &x) { return this->insert(position, const_cast(x)); } template iterator insert(const_iterator position, const U &u, typename container_detail::enable_if_c::value && !::boost::has_move_emulation_enabled::value >::type* =0) { return priv_insert(position, u); } #endif //! Effects: Inserts an element move constructed from x in the container. //! p is a hint pointing to where the insert should start to search. //! //! Returns: An iterator pointing to the element with key equivalent to the key of x. //! //! Complexity: Logarithmic search time (constant if x is inserted //! right before p) plus insertion linear to the elements with bigger keys than x. //! //! Note: If an element is inserted it might invalidate elements. iterator insert(const_iterator position, BOOST_RV_REF(value_type) x) { return m_flat_tree.insert_unique(position, boost::move(x)); } //! Requires: first, last are not iterators into *this. //! //! Effects: inserts each element from the range [first,last) if and only //! if there is no element with key equivalent to the key of that element. //! //! Complexity: At most N log(size()+N) (N is the distance from first to last) //! search time plus N*size() insertion time. //! //! Note: If an element is inserted it might invalidate elements. template void insert(InputIterator first, InputIterator last) { m_flat_tree.insert_unique(first, last); } //! Requires: first, last are not iterators into *this and //! must be ordered according to the predicate and must be //! unique values. //! //! Effects: inserts each element from the range [first,last) .This function //! is more efficient than the normal range creation for ordered ranges. //! //! Complexity: At most N log(size()+N) (N is the distance from first to last) //! search time plus N*size() insertion time. //! //! Note: Non-standard extension. If an element is inserted it might invalidate elements. template void insert(ordered_unique_range_t, InputIterator first, InputIterator last) { m_flat_tree.insert_unique(ordered_unique_range, first, last); } #if defined(BOOST_CONTAINER_PERFECT_FORWARDING) || defined(BOOST_CONTAINER_DOXYGEN_INVOKED) //! Effects: Inserts an object x of type T constructed with //! std::forward(args)... if and only if there is no element in the container //! with key equivalent to the key of x. //! //! Returns: The bool component of the returned pair is true if and only //! if the insertion takes place, and the iterator component of the pair //! points to the element with key equivalent to the key of x. //! //! Complexity: Logarithmic search time plus linear insertion //! to the elements with bigger keys than x. //! //! Note: If an element is inserted it might invalidate elements. template std::pair emplace(Args&&... args) { return m_flat_tree.emplace_unique(boost::forward(args)...); } //! Effects: Inserts an object of type T constructed with //! std::forward(args)... in the container if and only if there is //! no element in the container with key equivalent to the key of x. //! p is a hint pointing to where the insert should start to search. //! //! Returns: An iterator pointing to the element with key equivalent //! to the key of x. //! //! Complexity: Logarithmic search time (constant if x is inserted //! right before p) plus insertion linear to the elements with bigger keys than x. //! //! Note: If an element is inserted it might invalidate elements. template iterator emplace_hint(const_iterator hint, Args&&... args) { return m_flat_tree.emplace_hint_unique(hint, boost::forward(args)...); } #else //#ifdef BOOST_CONTAINER_PERFECT_FORWARDING #define BOOST_PP_LOCAL_MACRO(n) \ BOOST_PP_EXPR_IF(n, template<) BOOST_PP_ENUM_PARAMS(n, class P) BOOST_PP_EXPR_IF(n, >) \ std::pair emplace(BOOST_PP_ENUM(n, BOOST_CONTAINER_PP_PARAM_LIST, _)) \ { return m_flat_tree.emplace_unique(BOOST_PP_ENUM(n, BOOST_CONTAINER_PP_PARAM_FORWARD, _)); } \ \ BOOST_PP_EXPR_IF(n, template<) BOOST_PP_ENUM_PARAMS(n, class P) BOOST_PP_EXPR_IF(n, >) \ iterator emplace_hint(const_iterator hint \ BOOST_PP_ENUM_TRAILING(n, BOOST_CONTAINER_PP_PARAM_LIST, _)) \ { return m_flat_tree.emplace_hint_unique \ (hint BOOST_PP_ENUM_TRAILING(n, BOOST_CONTAINER_PP_PARAM_FORWARD, _)); } \ //! #define BOOST_PP_LOCAL_LIMITS (0, BOOST_CONTAINER_MAX_CONSTRUCTOR_PARAMETERS) #include BOOST_PP_LOCAL_ITERATE() #endif //#ifdef BOOST_CONTAINER_PERFECT_FORWARDING //! Effects: Erases the element pointed to by position. //! //! Returns: Returns an iterator pointing to the element immediately //! following q prior to the element being erased. If no such element exists, //! returns end(). //! //! Complexity: Linear to the elements with keys bigger than position //! //! Note: Invalidates elements with keys //! not less than the erased element. iterator erase(const_iterator position) { return m_flat_tree.erase(position); } //! Effects: Erases all elements in the container with key equivalent to x. //! //! Returns: Returns the number of erased elements. //! //! Complexity: Logarithmic search time plus erasure time //! linear to the elements with bigger keys. size_type erase(const key_type& x) { return m_flat_tree.erase(x); } //! Effects: Erases all the elements in the range [first, last). //! //! Returns: Returns last. //! //! Complexity: size()*N where N is the distance from first to last. //! //! Complexity: Logarithmic search time plus erasure time //! linear to the elements with bigger keys. iterator erase(const_iterator first, const_iterator last) { return m_flat_tree.erase(first, last); } //! Effects: erase(a.begin(),a.end()). //! //! Postcondition: size() == 0. //! //! Complexity: linear in size(). void clear() { m_flat_tree.clear(); } //! Effects: Tries to deallocate the excess of memory created // with previous allocations. The size of the vector is unchanged //! //! Throws: If memory allocation throws, or T's copy constructor throws. //! //! Complexity: Linear to size(). void shrink_to_fit() { m_flat_tree.shrink_to_fit(); } //! Returns: An iterator pointing to an element with the key //! equivalent to x, or end() if such an element is not found. //! //! Complexity: Logarithmic. iterator find(const key_type& x) { return m_flat_tree.find(x); } //! Returns: A const_iterator pointing to an element with the key //! equivalent to x, or end() if such an element is not found. //! //! Complexity: Logarithmic.s const_iterator find(const key_type& x) const { return m_flat_tree.find(x); } //! Returns: The number of elements with key equivalent to x. //! //! Complexity: log(size())+count(k) size_type count(const key_type& x) const { return m_flat_tree.find(x) == m_flat_tree.end() ? 0 : 1; } //! Returns: An iterator pointing to the first element with key not less //! than k, or a.end() if such an element is not found. //! //! Complexity: Logarithmic iterator lower_bound(const key_type& x) { return m_flat_tree.lower_bound(x); } //! Returns: A const iterator pointing to the first element with key not //! less than k, or a.end() if such an element is not found. //! //! Complexity: Logarithmic const_iterator lower_bound(const key_type& x) const { return m_flat_tree.lower_bound(x); } //! Returns: An iterator pointing to the first element with key not less //! than x, or end() if such an element is not found. //! //! Complexity: Logarithmic iterator upper_bound(const key_type& x) { return m_flat_tree.upper_bound(x); } //! Returns: A const iterator pointing to the first element with key not //! less than x, or end() if such an element is not found. //! //! Complexity: Logarithmic const_iterator upper_bound(const key_type& x) const { return m_flat_tree.upper_bound(x); } //! Effects: Equivalent to std::make_pair(this->lower_bound(k), this->upper_bound(k)). //! //! Complexity: Logarithmic std::pair equal_range(const key_type& x) const { return m_flat_tree.equal_range(x); } //! Effects: Equivalent to std::make_pair(this->lower_bound(k), this->upper_bound(k)). //! //! Complexity: Logarithmic std::pair equal_range(const key_type& x) { return m_flat_tree.equal_range(x); } //! Effects: Number of elements for which memory has been allocated. //! capacity() is always greater than or equal to size(). //! //! Throws: Nothing. //! //! Complexity: Constant. size_type capacity() const { return m_flat_tree.capacity(); } //! Effects: If n is less than or equal to capacity(), this call has no //! effect. Otherwise, it is a request for allocation of additional memory. //! If the request is successful, then capacity() is greater than or equal to //! n; otherwise, capacity() is unchanged. In either case, size() is unchanged. //! //! Throws: If memory allocation allocation throws or T's copy constructor throws. //! //! Note: If capacity() is less than "count", iterators and references to //! to values might be invalidated. void reserve(size_type count) { m_flat_tree.reserve(count); } /// @cond template friend bool operator== (const flat_set&, const flat_set&); template friend bool operator< (const flat_set&, const flat_set&); private: std::pair priv_insert(const T &x) { return m_flat_tree.insert_unique(x); } iterator priv_insert(const_iterator p, const T &x) { return m_flat_tree.insert_unique(p, x); } /// @endcond }; template inline bool operator==(const flat_set& x, const flat_set& y) { return x.m_flat_tree == y.m_flat_tree; } template inline bool operator<(const flat_set& x, const flat_set& y) { return x.m_flat_tree < y.m_flat_tree; } template inline bool operator!=(const flat_set& x, const flat_set& y) { return !(x == y); } template inline bool operator>(const flat_set& x, const flat_set& y) { return y < x; } template inline bool operator<=(const flat_set& x, const flat_set& y) { return !(y < x); } template inline bool operator>=(const flat_set& x, const flat_set& y) { return !(x < y); } template inline void swap(flat_set& x, flat_set& y) { x.swap(y); } /// @cond } //namespace container { /* //!has_trivial_destructor_after_move<> == true_type //!specialization for optimizations template struct has_trivial_destructor_after_move > { static const bool value = has_trivial_destructor::value &&has_trivial_destructor::value; }; */ namespace container { // Forward declaration of operators < and ==, needed for friend declaration. #ifdef BOOST_CONTAINER_DOXYGEN_INVOKED template , class A = std::allocator > #else template #endif class flat_multiset; template inline bool operator==(const flat_multiset& x, const flat_multiset& y); template inline bool operator<(const flat_multiset& x, const flat_multiset& y); /// @endcond //! flat_multiset is a Sorted Associative Container that stores objects of type Key. //! flat_multiset is a Simple Associative Container, meaning that its value type, //! as well as its key type, is Key. //! flat_Multiset can store multiple copies of the same key value. //! //! flat_multiset is similar to std::multiset but it's implemented like an ordered vector. //! This means that inserting a new element into a flat_multiset invalidates //! previous iterators and references //! //! Erasing an element of a flat_multiset invalidates iterators and references //! pointing to elements that come after (their keys are equal or bigger) the erased element. #ifdef BOOST_CONTAINER_DOXYGEN_INVOKED template , class A = std::allocator > #else template #endif class flat_multiset { /// @cond private: BOOST_COPYABLE_AND_MOVABLE(flat_multiset) typedef container_detail::flat_tree, Pred, A> tree_t; tree_t m_flat_tree; // flat tree representing flat_multiset typedef typename container_detail:: move_const_ref_type::type insert_const_ref_type; /// @endcond public: // typedefs: typedef typename tree_t::key_type key_type; typedef typename tree_t::value_type value_type; typedef typename tree_t::pointer pointer; typedef typename tree_t::const_pointer const_pointer; typedef typename tree_t::reference reference; typedef typename tree_t::const_reference const_reference; typedef typename tree_t::key_compare key_compare; typedef typename tree_t::value_compare value_compare; typedef typename tree_t::iterator iterator; typedef typename tree_t::const_iterator const_iterator; typedef typename tree_t::reverse_iterator reverse_iterator; typedef typename tree_t::const_reverse_iterator const_reverse_iterator; typedef typename tree_t::size_type size_type; typedef typename tree_t::difference_type difference_type; typedef typename tree_t::allocator_type allocator_type; typedef typename tree_t::stored_allocator_type stored_allocator_type; //! Effects: Default constructs an empty flat_multiset. //! //! Complexity: Constant. explicit flat_multiset() : m_flat_tree() {} explicit flat_multiset(const Pred& comp, const allocator_type& a = allocator_type()) : m_flat_tree(comp, a) {} template flat_multiset(InputIterator first, InputIterator last, const Pred& comp = Pred(), const allocator_type& a = allocator_type()) : m_flat_tree(comp, a) { m_flat_tree.insert_equal(first, last); } //! Effects: Constructs an empty flat_multiset using the specified comparison object and //! allocator, and inserts elements from the ordered range [first ,last ). This function //! is more efficient than the normal range creation for ordered ranges. //! //! Requires: [first ,last) must be ordered according to the predicate. //! //! Complexity: Linear in N. //! //! Note: Non-standard extension. template flat_multiset(ordered_range_t, InputIterator first, InputIterator last, const Pred& comp = Pred(), const allocator_type& a = allocator_type()) : m_flat_tree(ordered_range, first, last, comp, a) {} //! Effects: Copy constructs a flat_multiset. //! //! Complexity: Linear in x.size(). flat_multiset(const flat_multiset& x) : m_flat_tree(x.m_flat_tree) {} //! Effects: Move constructs a flat_multiset. Constructs *this using x's resources. //! //! Complexity: Constant. //! //! Postcondition: x is emptied. flat_multiset(BOOST_RV_REF(flat_multiset) mx) : m_flat_tree(boost::move(mx.m_flat_tree)) {} //! Effects: Copy constructs a flat_multiset using the specified allocator. //! //! Complexity: Linear in x.size(). flat_multiset(const flat_multiset& x, const allocator_type &a) : m_flat_tree(x.m_flat_tree, a) {} //! Effects: Move constructs a flat_multiset using the specified allocator. //! Constructs *this using x's resources. //! //! Complexity: Constant if a == mx.get_allocator(), linear otherwise flat_multiset(BOOST_RV_REF(flat_multiset) mx, const allocator_type &a) : m_flat_tree(boost::move(mx.m_flat_tree), a) {} //! Effects: Makes *this a copy of x. //! //! Complexity: Linear in x.size(). flat_multiset& operator=(BOOST_COPY_ASSIGN_REF(flat_multiset) x) { m_flat_tree = x.m_flat_tree; return *this; } //! Effects: Makes *this a copy of x. //! //! Complexity: Linear in x.size(). flat_multiset& operator=(BOOST_RV_REF(flat_multiset) mx) { m_flat_tree = boost::move(mx.m_flat_tree); return *this; } //! Effects: Returns the comparison object out //! of which a was constructed. //! //! Complexity: Constant. key_compare key_comp() const { return m_flat_tree.key_comp(); } //! Effects: Returns an object of value_compare constructed out //! of the comparison object. //! //! Complexity: Constant. value_compare value_comp() const { return m_flat_tree.key_comp(); } //! Effects: Returns a copy of the Allocator that //! was passed to the object's constructor. //! //! Complexity: Constant. allocator_type get_allocator() const { return m_flat_tree.get_allocator(); } const stored_allocator_type &get_stored_allocator() const { return m_flat_tree.get_stored_allocator(); } stored_allocator_type &get_stored_allocator() { return m_flat_tree.get_stored_allocator(); } //! Effects: Returns an iterator to the first element contained in the container. //! //! Throws: Nothing. //! //! Complexity: Constant. iterator begin() { return m_flat_tree.begin(); } //! Effects: Returns a const_iterator to the first element contained in the container. //! //! Throws: Nothing. //! //! Complexity: Constant. const_iterator begin() const { return m_flat_tree.begin(); } //! Effects: Returns a const_iterator to the first element contained in the container. //! //! Throws: Nothing. //! //! Complexity: Constant. const_iterator cbegin() const { return m_flat_tree.cbegin(); } //! Effects: Returns an iterator to the end of the container. //! //! Throws: Nothing. //! //! Complexity: Constant. iterator end() { return m_flat_tree.end(); } //! Effects: Returns a const_iterator to the end of the container. //! //! Throws: Nothing. //! //! Complexity: Constant. const_iterator end() const { return m_flat_tree.end(); } //! Effects: Returns a const_iterator to the end of the container. //! //! Throws: Nothing. //! //! Complexity: Constant. const_iterator cend() const { return m_flat_tree.cend(); } //! Effects: Returns a reverse_iterator pointing to the beginning //! of the reversed container. //! //! Throws: Nothing. //! //! Complexity: Constant. reverse_iterator rbegin() { return m_flat_tree.rbegin(); } //! Effects: Returns a const_reverse_iterator pointing to the beginning //! of the reversed container. //! //! Throws: Nothing. //! //! Complexity: Constant. const_reverse_iterator rbegin() const { return m_flat_tree.rbegin(); } //! Effects: Returns a const_reverse_iterator pointing to the beginning //! of the reversed container. //! //! Throws: Nothing. //! //! Complexity: Constant. const_reverse_iterator crbegin() const { return m_flat_tree.crbegin(); } //! Effects: Returns a reverse_iterator pointing to the end //! of the reversed container. //! //! Throws: Nothing. //! //! Complexity: Constant. reverse_iterator rend() { return m_flat_tree.rend(); } //! Effects: Returns a const_reverse_iterator pointing to the end //! of the reversed container. //! //! Throws: Nothing. //! //! Complexity: Constant. const_reverse_iterator rend() const { return m_flat_tree.rend(); } //! Effects: Returns a const_reverse_iterator pointing to the end //! of the reversed container. //! //! Throws: Nothing. //! //! Complexity: Constant. const_reverse_iterator crend() const { return m_flat_tree.crend(); } //! Effects: Returns true if the container contains no elements. //! //! Throws: Nothing. //! //! Complexity: Constant. bool empty() const { return m_flat_tree.empty(); } //! Effects: Returns the number of the elements contained in the container. //! //! Throws: Nothing. //! //! Complexity: Constant. size_type size() const { return m_flat_tree.size(); } //! Effects: Returns the largest possible size of the container. //! //! Throws: Nothing. //! //! Complexity: Constant. size_type max_size() const { return m_flat_tree.max_size(); } //! Effects: Swaps the contents of *this and x. //! //! Throws: Nothing. //! //! Complexity: Constant. void swap(flat_multiset& x) { m_flat_tree.swap(x.m_flat_tree); } //! Effects: Inserts x and returns the iterator pointing to the //! newly inserted element. //! //! Complexity: Logarithmic search time plus linear insertion //! to the elements with bigger keys than x. //! //! Note: If an element is inserted it might invalidate elements. iterator insert(insert_const_ref_type x) { return priv_insert(x); } #if defined(BOOST_NO_RVALUE_REFERENCES) && !defined(BOOST_CONTAINER_DOXYGEN_INVOKED) iterator insert(T &x) { return this->insert(const_cast(x)); } template iterator insert(const U &u, typename container_detail::enable_if_c::value && !::boost::has_move_emulation_enabled::value >::type* =0) { return priv_insert(u); } #endif //! Effects: Inserts a new value_type move constructed from x //! and returns the iterator pointing to the newly inserted element. //! //! Complexity: Logarithmic search time plus linear insertion //! to the elements with bigger keys than x. //! //! Note: If an element is inserted it might invalidate elements. iterator insert(BOOST_RV_REF(value_type) x) { return m_flat_tree.insert_equal(boost::move(x)); } //! Effects: Inserts a copy of x in the container. //! p is a hint pointing to where the insert should start to search. //! //! Returns: An iterator pointing to the element with key equivalent //! to the key of x. //! //! Complexity: Logarithmic search time (constant if x is inserted //! right before p) plus insertion linear to the elements with bigger keys than x. //! //! Note: If an element is inserted it might invalidate elements. iterator insert(const_iterator p, insert_const_ref_type x) { return priv_insert(p, x); } #if defined(BOOST_NO_RVALUE_REFERENCES) && !defined(BOOST_CONTAINER_DOXYGEN_INVOKED) iterator insert(const_iterator position, T &x) { return this->insert(position, const_cast(x)); } template iterator insert( const_iterator position, const U &u , typename container_detail::enable_if_c::value && !::boost::has_move_emulation_enabled::value >::type* =0) { return priv_insert(position, u); } #endif //! Effects: Inserts a new value move constructed from x in the container. //! p is a hint pointing to where the insert should start to search. //! //! Returns: An iterator pointing to the element with key equivalent //! to the key of x. //! //! Complexity: Logarithmic search time (constant if x is inserted //! right before p) plus insertion linear to the elements with bigger keys than x. //! //! Note: If an element is inserted it might invalidate elements. iterator insert(const_iterator position, BOOST_RV_REF(value_type) x) { return m_flat_tree.insert_equal(position, boost::move(x)); } //! Requires: first, last are not iterators into *this. //! //! Effects: inserts each element from the range [first,last) . //! //! Complexity: At most N log(size()+N) (N is the distance from first to last) //! search time plus N*size() insertion time. //! //! Note: If an element is inserted it might invalidate elements. template void insert(InputIterator first, InputIterator last) { m_flat_tree.insert_equal(first, last); } //! Requires: first, last are not iterators into *this and //! must be ordered according to the predicate. //! //! Effects: inserts each element from the range [first,last) .This function //! is more efficient than the normal range creation for ordered ranges. //! //! Complexity: At most N log(size()+N) (N is the distance from first to last) //! search time plus N*size() insertion time. //! //! Note: Non-standard extension. If an element is inserted it might invalidate elements. template void insert(ordered_range_t, InputIterator first, InputIterator last) { m_flat_tree.insert_equal(ordered_range, first, last); } #if defined(BOOST_CONTAINER_PERFECT_FORWARDING) || defined(BOOST_CONTAINER_DOXYGEN_INVOKED) //! Effects: Inserts an object of type T constructed with //! std::forward(args)... and returns the iterator pointing to the //! newly inserted element. //! //! Complexity: Logarithmic search time plus linear insertion //! to the elements with bigger keys than x. //! //! Note: If an element is inserted it might invalidate elements. template iterator emplace(Args&&... args) { return m_flat_tree.emplace_equal(boost::forward(args)...); } //! Effects: Inserts an object of type T constructed with //! std::forward(args)... in the container. //! p is a hint pointing to where the insert should start to search. //! //! Returns: An iterator pointing to the element with key equivalent //! to the key of x. //! //! Complexity: Logarithmic search time (constant if x is inserted //! right before p) plus insertion linear to the elements with bigger keys than x. //! //! Note: If an element is inserted it might invalidate elements. template iterator emplace_hint(const_iterator hint, Args&&... args) { return m_flat_tree.emplace_hint_equal(hint, boost::forward(args)...); } #else //#ifdef BOOST_CONTAINER_PERFECT_FORWARDING #define BOOST_PP_LOCAL_MACRO(n) \ BOOST_PP_EXPR_IF(n, template<) BOOST_PP_ENUM_PARAMS(n, class P) BOOST_PP_EXPR_IF(n, >) \ iterator emplace(BOOST_PP_ENUM(n, BOOST_CONTAINER_PP_PARAM_LIST, _)) \ { return m_flat_tree.emplace_equal(BOOST_PP_ENUM(n, BOOST_CONTAINER_PP_PARAM_FORWARD, _)); } \ \ BOOST_PP_EXPR_IF(n, template<) BOOST_PP_ENUM_PARAMS(n, class P) BOOST_PP_EXPR_IF(n, >) \ iterator emplace_hint(const_iterator hint \ BOOST_PP_ENUM_TRAILING(n, BOOST_CONTAINER_PP_PARAM_LIST, _)) \ { return m_flat_tree.emplace_hint_equal \ (hint BOOST_PP_ENUM_TRAILING(n, BOOST_CONTAINER_PP_PARAM_FORWARD, _)); } \ //! #define BOOST_PP_LOCAL_LIMITS (0, BOOST_CONTAINER_MAX_CONSTRUCTOR_PARAMETERS) #include BOOST_PP_LOCAL_ITERATE() #endif //#ifdef BOOST_CONTAINER_PERFECT_FORWARDING //! Effects: Erases the element pointed to by position. //! //! Returns: Returns an iterator pointing to the element immediately //! following q prior to the element being erased. If no such element exists, //! returns end(). //! //! Complexity: Linear to the elements with keys bigger than position //! //! Note: Invalidates elements with keys //! not less than the erased element. iterator erase(const_iterator position) { return m_flat_tree.erase(position); } //! Effects: Erases all elements in the container with key equivalent to x. //! //! Returns: Returns the number of erased elements. //! //! Complexity: Logarithmic search time plus erasure time //! linear to the elements with bigger keys. size_type erase(const key_type& x) { return m_flat_tree.erase(x); } //! Effects: Erases all the elements in the range [first, last). //! //! Returns: Returns last. //! //! Complexity: size()*N where N is the distance from first to last. //! //! Complexity: Logarithmic search time plus erasure time //! linear to the elements with bigger keys. iterator erase(const_iterator first, const_iterator last) { return m_flat_tree.erase(first, last); } //! Effects: erase(a.begin(),a.end()). //! //! Postcondition: size() == 0. //! //! Complexity: linear in size(). void clear() { m_flat_tree.clear(); } //! Effects: Tries to deallocate the excess of memory created // with previous allocations. The size of the vector is unchanged //! //! Throws: If memory allocation throws, or T's copy constructor throws. //! //! Complexity: Linear to size(). void shrink_to_fit() { m_flat_tree.shrink_to_fit(); } //! Returns: An iterator pointing to an element with the key //! equivalent to x, or end() if such an element is not found. //! //! Complexity: Logarithmic. iterator find(const key_type& x) { return m_flat_tree.find(x); } //! Returns: A const_iterator pointing to an element with the key //! equivalent to x, or end() if such an element is not found. //! //! Complexity: Logarithmic.s const_iterator find(const key_type& x) const { return m_flat_tree.find(x); } //! Returns: The number of elements with key equivalent to x. //! //! Complexity: log(size())+count(k) size_type count(const key_type& x) const { return m_flat_tree.count(x); } //! Returns: An iterator pointing to the first element with key not less //! than k, or a.end() if such an element is not found. //! //! Complexity: Logarithmic iterator lower_bound(const key_type& x) { return m_flat_tree.lower_bound(x); } //! Returns: A const iterator pointing to the first element with key not //! less than k, or a.end() if such an element is not found. //! //! Complexity: Logarithmic const_iterator lower_bound(const key_type& x) const { return m_flat_tree.lower_bound(x); } //! Returns: An iterator pointing to the first element with key not less //! than x, or end() if such an element is not found. //! //! Complexity: Logarithmic iterator upper_bound(const key_type& x) { return m_flat_tree.upper_bound(x); } //! Returns: A const iterator pointing to the first element with key not //! less than x, or end() if such an element is not found. //! //! Complexity: Logarithmic const_iterator upper_bound(const key_type& x) const { return m_flat_tree.upper_bound(x); } //! Effects: Equivalent to std::make_pair(this->lower_bound(k), this->upper_bound(k)). //! //! Complexity: Logarithmic std::pair equal_range(const key_type& x) const { return m_flat_tree.equal_range(x); } //! Effects: Equivalent to std::make_pair(this->lower_bound(k), this->upper_bound(k)). //! //! Complexity: Logarithmic std::pair equal_range(const key_type& x) { return m_flat_tree.equal_range(x); } //! Effects: Number of elements for which memory has been allocated. //! capacity() is always greater than or equal to size(). //! //! Throws: Nothing. //! //! Complexity: Constant. size_type capacity() const { return m_flat_tree.capacity(); } //! Effects: If n is less than or equal to capacity(), this call has no //! effect. Otherwise, it is a request for allocation of additional memory. //! If the request is successful, then capacity() is greater than or equal to //! n; otherwise, capacity() is unchanged. In either case, size() is unchanged. //! //! Throws: If memory allocation allocation throws or T's copy constructor throws. //! //! Note: If capacity() is less than "count", iterators and references to //! to values might be invalidated. void reserve(size_type count) { m_flat_tree.reserve(count); } /// @cond template friend bool operator== (const flat_multiset&, const flat_multiset&); template friend bool operator< (const flat_multiset&, const flat_multiset&); private: iterator priv_insert(const T &x) { return m_flat_tree.insert_equal(x); } iterator priv_insert(const_iterator p, const T &x) { return m_flat_tree.insert_equal(p, x); } /// @endcond }; template inline bool operator==(const flat_multiset& x, const flat_multiset& y) { return x.m_flat_tree == y.m_flat_tree; } template inline bool operator<(const flat_multiset& x, const flat_multiset& y) { return x.m_flat_tree < y.m_flat_tree; } template inline bool operator!=(const flat_multiset& x, const flat_multiset& y) { return !(x == y); } template inline bool operator>(const flat_multiset& x, const flat_multiset& y) { return y < x; } template inline bool operator<=(const flat_multiset& x, const flat_multiset& y) { return !(y < x); } template inline bool operator>=(const flat_multiset& x, const flat_multiset& y) { return !(x < y); } template inline void swap(flat_multiset& x, flat_multiset& y) { x.swap(y); } /// @cond } //namespace container { /* //!has_trivial_destructor_after_move<> == true_type //!specialization for optimizations template struct has_trivial_destructor_after_move > { static const bool value = has_trivial_destructor::value && has_trivial_destructor::value; }; */ namespace container { /// @endcond }} #include #endif /* BOOST_CONTAINER_FLAT_SET_HPP */