////////////////////////////////////////////////////////////////////////////// // // (C) Copyright Ion Gaztanaga 2005-2012. Distributed under the Boost // Software License, Version 1.0. (See accompanying file // LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt) // // See http://www.boost.org/libs/container for documentation. // #ifndef BOOST_CONTAINER_LIST_HPP_ #define BOOST_CONTAINER_LIST_HPP_ #if (defined _MSC_VER) && (_MSC_VER >= 1200) # pragma once #endif #include #include #include #include #include #include #include #include #include #include #include #include #include #include #if defined(BOOST_CONTAINER_PERFECT_FORWARDING) || defined(BOOST_CONTAINER_DOXYGEN_INVOKED) #else //Preprocessor library to emulate perfect forwarding #include #endif #include #include #include #include #include #include #include #ifdef BOOST_CONTAINER_DOXYGEN_INVOKED namespace boost { namespace container { #else namespace boost { namespace container { #endif /// @cond namespace container_detail { template struct list_hook { typedef typename container_detail::bi::make_list_base_hook , container_detail::bi::link_mode >::type type; }; template struct list_node : public list_hook::type { private: list_node(); public: typedef typename list_hook::type hook_type; T m_data; }; template struct intrusive_list_type { typedef boost::container::allocator_traits allocator_traits_type; typedef typename allocator_traits_type::value_type value_type; typedef typename boost::intrusive::pointer_traits ::template rebind_pointer::type void_pointer; typedef typename container_detail::list_node node_type; typedef typename container_detail::bi::make_list < node_type , container_detail::bi::base_hook::type> , container_detail::bi::constant_time_size , container_detail::bi::size_type >::type container_type; typedef container_type type ; }; } //namespace container_detail { /// @endcond //! A list is a doubly linked list. That is, it is a Sequence that supports both //! forward and backward traversal, and (amortized) constant time insertion and //! removal of elements at the beginning or the end, or in the middle. Lists have //! the important property that insertion and splicing do not invalidate iterators //! to list elements, and that even removal invalidates only the iterators that point //! to the elements that are removed. The ordering of iterators may be changed //! (that is, list::iterator might have a different predecessor or successor //! after a list operation than it did before), but the iterators themselves will //! not be invalidated or made to point to different elements unless that invalidation //! or mutation is explicit. #ifdef BOOST_CONTAINER_DOXYGEN_INVOKED template > #else template #endif class list : protected container_detail::node_alloc_holder ::type> { /// @cond typedef typename container_detail::intrusive_list_type::type Icont; typedef list ThisType; typedef container_detail::node_alloc_holder AllocHolder; typedef typename AllocHolder::NodePtr NodePtr; typedef typename AllocHolder::NodeAlloc NodeAlloc; typedef typename AllocHolder::ValAlloc ValAlloc; typedef typename AllocHolder::Node Node; typedef container_detail::allocator_destroyer Destroyer; typedef typename AllocHolder::allocator_v1 allocator_v1; typedef typename AllocHolder::allocator_v2 allocator_v2; typedef typename AllocHolder::alloc_version alloc_version; typedef boost::container::allocator_traits allocator_traits_type; class equal_to_value { typedef typename AllocHolder::value_type value_type; const value_type &t_; public: equal_to_value(const value_type &t) : t_(t) {} bool operator()(const value_type &t)const { return t_ == t; } }; template struct ValueCompareToNodeCompare : Pred { ValueCompareToNodeCompare(Pred pred) : Pred(pred) {} bool operator()(const Node &a, const Node &b) const { return static_cast(*this)(a.m_data, b.m_data); } bool operator()(const Node &a) const { return static_cast(*this)(a.m_data); } }; /// @endcond public: //! The type of object, T, stored in the list typedef T value_type; //! Pointer to T typedef typename allocator_traits_type::pointer pointer; //! Const pointer to T typedef typename allocator_traits_type::const_pointer const_pointer; //! Reference to T typedef typename allocator_traits_type::reference reference; //! Const reference to T typedef typename allocator_traits_type::const_reference const_reference; //! An unsigned integral type typedef typename allocator_traits_type::size_type size_type; //! A signed integral type typedef typename allocator_traits_type::difference_type difference_type; //! The allocator type typedef A allocator_type; //! Non-standard extension: the stored allocator type typedef NodeAlloc stored_allocator_type; /// @cond private: BOOST_COPYABLE_AND_MOVABLE(list) typedef difference_type list_difference_type; typedef pointer list_pointer; typedef const_pointer list_const_pointer; typedef reference list_reference; typedef const_reference list_const_reference; /// @endcond public: //! Const iterator used to iterate through a list. class const_iterator /// @cond : public std::iterator { protected: typename Icont::iterator m_it; explicit const_iterator(typename Icont::iterator it) : m_it(it){} void prot_incr() { ++m_it; } void prot_decr() { --m_it; } private: typename Icont::iterator get() { return this->m_it; } public: friend class list; typedef list_difference_type difference_type; //Constructors const_iterator() : m_it() {} //Pointer like operators const_reference operator*() const { return m_it->m_data; } const_pointer operator->() const { return const_pointer(&m_it->m_data); } //Increment / Decrement const_iterator& operator++() { prot_incr(); return *this; } const_iterator operator++(int) { typename Icont::iterator tmp = m_it; ++*this; return const_iterator(tmp); } const_iterator& operator--() { prot_decr(); return *this; } const_iterator operator--(int) { typename Icont::iterator tmp = m_it; --*this; return const_iterator(tmp); } //Comparison operators bool operator== (const const_iterator& r) const { return m_it == r.m_it; } bool operator!= (const const_iterator& r) const { return m_it != r.m_it; } } /// @endcond ; //! Iterator used to iterate through a list class iterator /// @cond : public const_iterator { private: explicit iterator(typename Icont::iterator it) : const_iterator(it) {} typename Icont::iterator get() { return this->m_it; } public: friend class list; typedef list_pointer pointer; typedef list_reference reference; //Constructors iterator(){} //Pointer like operators reference operator*() const { return this->m_it->m_data; } pointer operator->() const { return pointer(&this->m_it->m_data); } //Increment / Decrement iterator& operator++() { this->prot_incr(); return *this; } iterator operator++(int) { typename Icont::iterator tmp = this->m_it; ++*this; return iterator(tmp); } iterator& operator--() { this->prot_decr(); return *this; } iterator operator--(int) { iterator tmp = *this; --*this; return tmp; } }; /// @endcond //! Iterator used to iterate backwards through a list. typedef std::reverse_iterator reverse_iterator; //! Const iterator used to iterate backwards through a list. typedef std::reverse_iterator const_reverse_iterator; //! Effects: Default constructs a list. //! //! Throws: If allocator_type's default constructor throws. //! //! Complexity: Constant. list() : AllocHolder() {} //! Effects: Constructs a list taking the allocator as parameter. //! //! Throws: If allocator_type's copy constructor throws. //! //! Complexity: Constant. explicit list(const allocator_type &a) : AllocHolder(a) {} //! Effects: Constructs a list that will use a copy of allocator a //! and inserts n copies of value. //! //! Throws: If allocator_type's default constructor or copy constructor //! throws or T's default or copy constructor throws. //! //! Complexity: Linear to n. explicit list(size_type n) : AllocHolder(A()) { this->resize(n); } //! Effects: Constructs a list that will use a copy of allocator a //! and inserts n copies of value. //! //! Throws: If allocator_type's default constructor or copy constructor //! throws or T's default or copy constructor throws. //! //! Complexity: Linear to n. list(size_type n, const T& value, const A& a = A()) : AllocHolder(a) { this->insert(this->cbegin(), n, value); } //! Effects: Copy constructs a list. //! //! Postcondition: x == *this. //! //! Throws: If allocator_type's default constructor or copy constructor throws. //! //! Complexity: Linear to the elements x contains. list(const list& x) : AllocHolder(x) { this->insert(this->cbegin(), x.begin(), x.end()); } //! Effects: Move constructor. Moves mx's resources to *this. //! //! Throws: If allocator_type's copy constructor throws. //! //! Complexity: Constant. list(BOOST_RV_REF(list) x) : AllocHolder(boost::move(static_cast(x))) {} //! Effects: Copy constructs a list using the specified allocator. //! //! Postcondition: x == *this. //! //! Throws: If allocator_type's default constructor or copy constructor throws. //! //! Complexity: Linear to the elements x contains. list(const list& x, const allocator_type &a) : AllocHolder(a) { this->insert(this->cbegin(), x.begin(), x.end()); } //! Effects: Move constructor sing the specified allocator. //! Moves mx's resources to *this. //! //! Throws: If allocation or value_type's copy constructor throws. //! //! Complexity: Constant if a == x.get_allocator(), linear otherwise. list(BOOST_RV_REF(list) x, const allocator_type &a) : AllocHolder(a) { if(this->node_alloc() == x.node_alloc()){ this->icont().swap(x.icont()); } else{ this->insert(this->cbegin(), x.begin(), x.end()); } } //! Effects: Constructs a list that will use a copy of allocator a //! and inserts a copy of the range [first, last) in the list. //! //! Throws: If allocator_type's default constructor or copy constructor //! throws or T's constructor taking an dereferenced InIt throws. //! //! Complexity: Linear to the range [first, last). template list(InpIt first, InpIt last, const A &a = A()) : AllocHolder(a) { this->insert(this->cbegin(), first, last); } //! Effects: Destroys the list. All stored values are destroyed //! and used memory is deallocated. //! //! Throws: Nothing. //! //! Complexity: Linear to the number of elements. ~list() {} //AllocHolder clears the list //! Effects: Returns a copy of the internal allocator. //! //! Throws: If allocator's copy constructor throws. //! //! Complexity: Constant. allocator_type get_allocator() const { return allocator_type(this->node_alloc()); } const stored_allocator_type &get_stored_allocator() const { return this->node_alloc(); } stored_allocator_type &get_stored_allocator() { return this->node_alloc(); } //! Effects: Erases all the elements of the list. //! //! Throws: Nothing. //! //! Complexity: Linear to the number of elements in the list. void clear() { AllocHolder::clear(alloc_version()); } //! Effects: Returns an iterator to the first element contained in the list. //! //! Throws: Nothing. //! //! Complexity: Constant. iterator begin() { return iterator(this->icont().begin()); } //! Effects: Returns a const_iterator to the first element contained in the list. //! //! Throws: Nothing. //! //! Complexity: Constant. const_iterator begin() const { return this->cbegin(); } //! Effects: Returns an iterator to the end of the list. //! //! Throws: Nothing. //! //! Complexity: Constant. iterator end() { return iterator(this->icont().end()); } //! Effects: Returns a const_iterator to the end of the list. //! //! Throws: Nothing. //! //! Complexity: Constant. const_iterator end() const { return this->cend(); } //! Effects: Returns a reverse_iterator pointing to the beginning //! of the reversed list. //! //! Throws: Nothing. //! //! Complexity: Constant. reverse_iterator rbegin() { return reverse_iterator(end()); } //! Effects: Returns a const_reverse_iterator pointing to the beginning //! of the reversed list. //! //! Throws: Nothing. //! //! Complexity: Constant. const_reverse_iterator rbegin() const { return this->crbegin(); } //! Effects: Returns a reverse_iterator pointing to the end //! of the reversed list. //! //! Throws: Nothing. //! //! Complexity: Constant. reverse_iterator rend() { return reverse_iterator(begin()); } //! Effects: Returns a const_reverse_iterator pointing to the end //! of the reversed list. //! //! Throws: Nothing. //! //! Complexity: Constant. const_reverse_iterator rend() const { return this->crend(); } //! Effects: Returns a const_iterator to the first element contained in the list. //! //! Throws: Nothing. //! //! Complexity: Constant. const_iterator cbegin() const { return const_iterator(this->non_const_icont().begin()); } //! Effects: Returns a const_iterator to the end of the list. //! //! Throws: Nothing. //! //! Complexity: Constant. const_iterator cend() const { return const_iterator(this->non_const_icont().end()); } //! Effects: Returns a const_reverse_iterator pointing to the beginning //! of the reversed list. //! //! Throws: Nothing. //! //! Complexity: Constant. const_reverse_iterator crbegin() const { return const_reverse_iterator(this->cend()); } //! Effects: Returns a const_reverse_iterator pointing to the end //! of the reversed list. //! //! Throws: Nothing. //! //! Complexity: Constant. const_reverse_iterator crend() const { return const_reverse_iterator(this->cbegin()); } //! Effects: Returns true if the list contains no elements. //! //! Throws: Nothing. //! //! Complexity: Constant. bool empty() const { return !this->size(); } //! Effects: Returns the number of the elements contained in the list. //! //! Throws: Nothing. //! //! Complexity: Constant. size_type size() const { return this->icont().size(); } //! Effects: Returns the largest possible size of the list. //! //! Throws: Nothing. //! //! Complexity: Constant. size_type max_size() const { return AllocHolder::max_size(); } #if defined(BOOST_CONTAINER_DOXYGEN_INVOKED) //! Effects: Inserts a copy of x at the beginning of the list. //! //! Throws: If memory allocation throws or //! T's copy constructor throws. //! //! Complexity: Amortized constant time. void push_front(const T &x); //! Effects: Constructs a new element in the beginning of the list //! and moves the resources of mx to this new element. //! //! Throws: If memory allocation throws. //! //! Complexity: Amortized constant time. void push_front(T &&x); #else BOOST_MOVE_CONVERSION_AWARE_CATCH(push_front, T, void, priv_push_front) #endif #if defined(BOOST_CONTAINER_DOXYGEN_INVOKED) //! Effects: Inserts a copy of x at the end of the list. //! //! Throws: If memory allocation throws or //! T's copy constructor throws. //! //! Complexity: Amortized constant time. void push_back(const T &x); //! Effects: Constructs a new element in the end of the list //! and moves the resources of mx to this new element. //! //! Throws: If memory allocation throws. //! //! Complexity: Amortized constant time. void push_back(T &&x); #else BOOST_MOVE_CONVERSION_AWARE_CATCH(push_back, T, void, priv_push_back) #endif //! Effects: Removes the first element from the list. //! //! Throws: Nothing. //! //! Complexity: Amortized constant time. void pop_front() { this->erase(this->cbegin()); } //! Effects: Removes the last element from the list. //! //! Throws: Nothing. //! //! Complexity: Amortized constant time. void pop_back() { const_iterator tmp = this->cend(); this->erase(--tmp); } //! Requires: !empty() //! //! Effects: Returns a reference to the first element //! from the beginning of the container. //! //! Throws: Nothing. //! //! Complexity: Constant. reference front() { return *this->begin(); } //! Requires: !empty() //! //! Effects: Returns a const reference to the first element //! from the beginning of the container. //! //! Throws: Nothing. //! //! Complexity: Constant. const_reference front() const { return *this->begin(); } //! Requires: !empty() //! //! Effects: Returns a reference to the first element //! from the beginning of the container. //! //! Throws: Nothing. //! //! Complexity: Constant. reference back() { return *(--this->end()); } //! Requires: !empty() //! //! Effects: Returns a const reference to the first element //! from the beginning of the container. //! //! Throws: Nothing. //! //! Complexity: Constant. const_reference back() const { return *(--this->end()); } //! Effects: Inserts or erases elements at the end such that //! the size becomes n. New elements are copy constructed from x. //! //! Throws: If memory allocation throws, or T's copy constructor throws. //! //! Complexity: Linear to the difference between size() and new_size. void resize(size_type new_size, const T& x) { const_iterator iend = this->cend(); size_type len = this->size(); if(len > new_size){ size_type to_erase = len - new_size; while(to_erase--){ --iend; } this->erase(iend, this->cend()); } else{ this->priv_create_and_insert_nodes(iend, new_size - len, x); } } //! Effects: Inserts or erases elements at the end such that //! the size becomes n. New elements are default constructed. //! //! Throws: If memory allocation throws, or T's copy constructor throws. //! //! Complexity: Linear to the difference between size() and new_size. void resize(size_type new_size) { const_iterator iend = this->end(); size_type len = this->size(); if(len > new_size){ size_type to_erase = len - new_size; const_iterator ifirst; if(to_erase < len/2u){ ifirst = iend; while(to_erase--){ --ifirst; } } else{ ifirst = this->begin(); size_type to_skip = len - to_erase; while(to_skip--){ ++ifirst; } } this->erase(ifirst, iend); } else{ this->priv_create_and_insert_nodes(this->cend(), new_size - len); } } //! Effects: Swaps the contents of *this and x. //! //! Throws: Nothing. //! //! Complexity: Constant. void swap(ThisType& x) { AllocHolder::swap(x); } //! Effects: Makes *this contain the same elements as x. //! //! Postcondition: this->size() == x.size(). *this contains a copy //! of each of x's elements. //! //! Throws: If memory allocation throws or T's copy constructor throws. //! //! Complexity: Linear to the number of elements in x. ThisType& operator=(BOOST_COPY_ASSIGN_REF(ThisType) x) { if (&x != this){ NodeAlloc &this_alloc = this->node_alloc(); const NodeAlloc &x_alloc = x.node_alloc(); container_detail::bool_ flag; if(flag && this_alloc != x_alloc){ this->clear(); } this->AllocHolder::copy_assign_alloc(x); this->assign(x.begin(), x.end()); } return *this; } //! Effects: Move assignment. All mx's values are transferred to *this. //! //! Postcondition: x.empty(). *this contains a the elements x had //! before the function. //! //! Throws: If allocator_type's copy constructor throws. //! //! Complexity: Constant. ThisType& operator=(BOOST_RV_REF(ThisType) x) { if (&x != this){ NodeAlloc &this_alloc = this->node_alloc(); NodeAlloc &x_alloc = x.node_alloc(); //If allocators are equal we can just swap pointers if(this_alloc == x_alloc){ //Destroy and swap pointers this->clear(); this->icont() = boost::move(x.icont()); //Move allocator if needed this->AllocHolder::move_assign_alloc(x); } //If unequal allocators, then do a one by one move else{ typedef typename std::iterator_traits::iterator_category ItCat; this->assign( boost::make_move_iterator(x.begin()) , boost::make_move_iterator(x.end())); } } return *this; } //! Requires: p must be a valid iterator of *this. //! //! Effects: Inserts n copies of x before p. //! //! Throws: If memory allocation throws or T's copy constructor throws. //! //! Complexity: Linear to n. void insert(const_iterator p, size_type n, const T& x) { this->priv_create_and_insert_nodes(p, n, x); } //! Requires: p must be a valid iterator of *this. //! //! Effects: Insert a copy of the [first, last) range before p. //! //! Throws: If memory allocation throws, T's constructor from a //! dereferenced InpIt throws. //! //! Complexity: Linear to std::distance [first, last). template void insert(const_iterator p, InpIt first, InpIt last) { const bool aux_boolean = container_detail::is_convertible::value; typedef container_detail::bool_ Result; this->priv_insert_dispatch(p, first, last, Result()); } #if defined(BOOST_CONTAINER_DOXYGEN_INVOKED) //! Requires: position must be a valid iterator of *this. //! //! Effects: Insert a copy of x before position. //! //! Throws: If memory allocation throws or x's copy constructor throws. //! //! Complexity: Amortized constant time. iterator insert(const_iterator position, const T &x); //! Requires: position must be a valid iterator of *this. //! //! Effects: Insert a new element before position with mx's resources. //! //! Throws: If memory allocation throws. //! //! Complexity: Amortized constant time. iterator insert(const_iterator position, T &&x); #else BOOST_MOVE_CONVERSION_AWARE_CATCH_1ARG(insert, T, iterator, priv_insert, const_iterator) #endif #if defined(BOOST_CONTAINER_PERFECT_FORWARDING) || defined(BOOST_CONTAINER_DOXYGEN_INVOKED) //! Effects: Inserts an object of type T constructed with //! std::forward(args)... in the end of the list. //! //! Throws: If memory allocation throws or //! T's in-place constructor throws. //! //! Complexity: Constant template void emplace_back(Args&&... args) { this->emplace(this->cend(), boost::forward(args)...); } //! Effects: Inserts an object of type T constructed with //! std::forward(args)... in the beginning of the list. //! //! Throws: If memory allocation throws or //! T's in-place constructor throws. //! //! Complexity: Constant template void emplace_front(Args&&... args) { this->emplace(this->cbegin(), boost::forward(args)...); } //! Effects: Inserts an object of type T constructed with //! std::forward(args)... before p. //! //! Throws: If memory allocation throws or //! T's in-place constructor throws. //! //! Complexity: Constant template iterator emplace(const_iterator p, Args&&... args) { NodePtr pnode(AllocHolder::create_node(boost::forward(args)...)); return iterator(this->icont().insert(p.get(), *pnode)); } #else //#ifdef BOOST_CONTAINER_PERFECT_FORWARDING #define BOOST_PP_LOCAL_MACRO(n) \ BOOST_PP_EXPR_IF(n, template<) BOOST_PP_ENUM_PARAMS(n, class P) BOOST_PP_EXPR_IF(n, >) \ void emplace_back(BOOST_PP_ENUM(n, BOOST_CONTAINER_PP_PARAM_LIST, _)) \ { \ this->emplace(this->cend() \ BOOST_PP_ENUM_TRAILING(n, BOOST_CONTAINER_PP_PARAM_FORWARD, _)); \ } \ \ BOOST_PP_EXPR_IF(n, template<) BOOST_PP_ENUM_PARAMS(n, class P) BOOST_PP_EXPR_IF(n, >) \ void emplace_front(BOOST_PP_ENUM(n, BOOST_CONTAINER_PP_PARAM_LIST, _)) \ { \ this->emplace(this->cbegin() \ BOOST_PP_ENUM_TRAILING(n, BOOST_CONTAINER_PP_PARAM_FORWARD, _)); \ } \ \ BOOST_PP_EXPR_IF(n, template<) BOOST_PP_ENUM_PARAMS(n, class P) BOOST_PP_EXPR_IF(n, >) \ iterator emplace(const_iterator p \ BOOST_PP_ENUM_TRAILING(n, BOOST_CONTAINER_PP_PARAM_LIST, _)) \ { \ NodePtr pnode (AllocHolder::create_node \ (BOOST_PP_ENUM(n, BOOST_CONTAINER_PP_PARAM_FORWARD, _))); \ return iterator(this->icont().insert(p.get(), *pnode)); \ } \ //! #define BOOST_PP_LOCAL_LIMITS (0, BOOST_CONTAINER_MAX_CONSTRUCTOR_PARAMETERS) #include BOOST_PP_LOCAL_ITERATE() #endif //#ifdef BOOST_CONTAINER_PERFECT_FORWARDING //! Requires: p must be a valid iterator of *this. //! //! Effects: Erases the element at p p. //! //! Throws: Nothing. //! //! Complexity: Amortized constant time. iterator erase(const_iterator p) { return iterator(this->icont().erase_and_dispose(p.get(), Destroyer(this->node_alloc()))); } //! Requires: first and last must be valid iterator to elements in *this. //! //! Effects: Erases the elements pointed by [first, last). //! //! Throws: Nothing. //! //! Complexity: Linear to the distance between first and last. iterator erase(const_iterator first, const_iterator last) { return iterator(AllocHolder::erase_range(first.get(), last.get(), alloc_version())); } //! Effects: Assigns the n copies of val to *this. //! //! Throws: If memory allocation throws or T's copy constructor throws. //! //! Complexity: Linear to n. void assign(size_type n, const T& val) { this->priv_fill_assign(n, val); } //! Effects: Assigns the the range [first, last) to *this. //! //! Throws: If memory allocation throws or //! T's constructor from dereferencing InpIt throws. //! //! Complexity: Linear to n. template void assign(InpIt first, InpIt last) { const bool aux_boolean = container_detail::is_convertible::value; typedef container_detail::bool_ Result; this->priv_assign_dispatch(first, last, Result()); } //! Requires: p must point to an element contained //! by the list. x != *this //! //! Effects: Transfers all the elements of list x to this list, before the //! the element pointed by p. No destructors or copy constructors are called. //! //! Throws: std::runtime_error if this' allocator and x's allocator //! are not equal. //! //! Complexity: Constant. //! //! Note: Iterators of values obtained from list x now point to elements of //! this list. Iterators of this list and all the references are not invalidated. void splice(const_iterator p, ThisType& x) BOOST_CONTAINER_NOEXCEPT { BOOST_ASSERT((NodeAlloc&)*this == (NodeAlloc&)x); this->icont().splice(p.get(), x.icont()); } //! Requires: p must point to an element contained //! by this list. i must point to an element contained in list x. //! //! Effects: Transfers the value pointed by i, from list x to this list, //! before the the element pointed by p. No destructors or copy constructors are called. //! If p == i or p == ++i, this function is a null operation. //! //! Throws: std::runtime_error if this' allocator and x's allocator //! are not equal. //! //! Complexity: Constant. //! //! Note: Iterators of values obtained from list x now point to elements of this //! list. Iterators of this list and all the references are not invalidated. void splice(const_iterator p, ThisType &x, const_iterator i) BOOST_CONTAINER_NOEXCEPT { BOOST_ASSERT((NodeAlloc&)*this == (NodeAlloc&)x); this->icont().splice(p.get(), x.icont(), i.get()); } //! Requires: p must point to an element contained //! by this list. first and last must point to elements contained in list x. //! //! Effects: Transfers the range pointed by first and last from list x to this list, //! before the the element pointed by p. No destructors or copy constructors are called. //! //! Throws: std::runtime_error if this' allocator and x's allocator //! are not equal. //! //! Complexity: Linear to the number of elements transferred. //! //! Note: Iterators of values obtained from list x now point to elements of this //! list. Iterators of this list and all the references are not invalidated. void splice(const_iterator p, ThisType &x, const_iterator first, const_iterator last) BOOST_CONTAINER_NOEXCEPT { BOOST_ASSERT((NodeAlloc&)*this == (NodeAlloc&)x); this->icont().splice(p.get(), x.icont(), first.get(), last.get()); } //! Requires: p must point to an element contained //! by this list. first and last must point to elements contained in list x. //! n == std::distance(first, last) //! //! Effects: Transfers the range pointed by first and last from list x to this list, //! before the the element pointed by p. No destructors or copy constructors are called. //! //! Throws: std::runtime_error if this' allocator and x's allocator //! are not equal. //! //! Complexity: Constant. //! //! Note: Iterators of values obtained from list x now point to elements of this //! list. Iterators of this list and all the references are not invalidated. void splice(const_iterator p, ThisType &x, const_iterator first, const_iterator last, size_type n) BOOST_CONTAINER_NOEXCEPT { BOOST_ASSERT((NodeAlloc&)*this == (NodeAlloc&)x); this->icont().splice(p.get(), x.icont(), first.get(), last.get(), n); } //! Effects: Reverses the order of elements in the list. //! //! Throws: Nothing. //! //! Complexity: This function is linear time. //! //! Note: Iterators and references are not invalidated void reverse() { this->icont().reverse(); } //! Effects: Removes all the elements that compare equal to value. //! //! Throws: Nothing. //! //! Complexity: Linear time. It performs exactly size() comparisons for equality. //! //! Note: The relative order of elements that are not removed is unchanged, //! and iterators to elements that are not removed remain valid. void remove(const T& value) { remove_if(equal_to_value(value)); } //! Effects: Removes all the elements for which a specified //! predicate is satisfied. //! //! Throws: If pred throws. //! //! Complexity: Linear time. It performs exactly size() calls to the predicate. //! //! Note: The relative order of elements that are not removed is unchanged, //! and iterators to elements that are not removed remain valid. template void remove_if(Pred pred) { typedef ValueCompareToNodeCompare Predicate; this->icont().remove_and_dispose_if(Predicate(pred), Destroyer(this->node_alloc())); } //! Effects: Removes adjacent duplicate elements or adjacent //! elements that are equal from the list. //! //! Throws: Nothing. //! //! Complexity: Linear time (size()-1 comparisons calls to pred()). //! //! Note: The relative order of elements that are not removed is unchanged, //! and iterators to elements that are not removed remain valid. void unique() { this->unique(value_equal()); } //! Effects: Removes adjacent duplicate elements or adjacent //! elements that satisfy some binary predicate from the list. //! //! Throws: If pred throws. //! //! Complexity: Linear time (size()-1 comparisons equality comparisons). //! //! Note: The relative order of elements that are not removed is unchanged, //! and iterators to elements that are not removed remain valid. template void unique(BinaryPredicate binary_pred) { typedef ValueCompareToNodeCompare Predicate; this->icont().unique_and_dispose(Predicate(binary_pred), Destroyer(this->node_alloc())); } //! Requires: The lists x and *this must be distinct. //! //! Effects: This function removes all of x's elements and inserts them //! in order into *this according to std::less. The merge is stable; //! that is, if an element from *this is equivalent to one from x, then the element //! from *this will precede the one from x. //! //! Throws: Nothing. //! //! Complexity: This function is linear time: it performs at most //! size() + x.size() - 1 comparisons. void merge(list& x) { this->merge(x, value_less()); } //! Requires: p must be a comparison function that induces a strict weak //! ordering and both *this and x must be sorted according to that ordering //! The lists x and *this must be distinct. //! //! Effects: This function removes all of x's elements and inserts them //! in order into *this. The merge is stable; that is, if an element from *this is //! equivalent to one from x, then the element from *this will precede the one from x. //! //! Throws: Nothing. //! //! Complexity: This function is linear time: it performs at most //! size() + x.size() - 1 comparisons. //! //! Note: Iterators and references to *this are not invalidated. template void merge(list &x, StrictWeakOrdering comp) { if((NodeAlloc&)*this == (NodeAlloc&)x){ this->icont().merge(x.icont(), ValueCompareToNodeCompare(comp)); } else{ throw std::runtime_error("list::merge called with unequal allocators"); } } //! Effects: This function sorts the list *this according to std::less. //! The sort is stable, that is, the relative order of equivalent elements is preserved. //! //! Throws: Nothing. //! //! Notes: Iterators and references are not invalidated. //! //! Complexity: The number of comparisons is approximately N log N, where N //! is the list's size. void sort() { this->sort(value_less()); } //! Effects: This function sorts the list *this according to std::less. //! The sort is stable, that is, the relative order of equivalent elements is preserved. //! //! Throws: Nothing. //! //! Notes: Iterators and references are not invalidated. //! //! Complexity: The number of comparisons is approximately N log N, where N //! is the list's size. template void sort(StrictWeakOrdering comp) { // nothing if the list has length 0 or 1. if (this->size() < 2) return; this->icont().sort(ValueCompareToNodeCompare(comp)); } /// @cond private: iterator priv_insert(const_iterator p, const T &x) { NodePtr tmp = AllocHolder::create_node(x); return iterator(this->icont().insert(p.get(), *tmp)); } iterator priv_insert(const_iterator p, BOOST_RV_REF(T) x) { NodePtr tmp = AllocHolder::create_node(boost::move(x)); return iterator(this->icont().insert(p.get(), *tmp)); } void priv_push_back (const T &x) { this->insert(this->cend(), x); } void priv_push_back (BOOST_RV_REF(T) x) { this->insert(this->cend(), boost::move(x)); } void priv_push_front (const T &x) { this->insert(this->cbegin(), x); } void priv_push_front (BOOST_RV_REF(T) x) { this->insert(this->cbegin(), boost::move(x)); } //Iterator range version template void priv_create_and_insert_nodes (const_iterator pos, InpIterator beg, InpIterator end) { typedef typename std::iterator_traits::iterator_category ItCat; priv_create_and_insert_nodes(pos, beg, end, alloc_version(), ItCat()); } template void priv_create_and_insert_nodes (const_iterator pos, InpIterator beg, InpIterator end, allocator_v1, std::input_iterator_tag) { for (; beg != end; ++beg){ this->icont().insert(pos.get(), *this->create_node_from_it(beg)); } } template void priv_create_and_insert_nodes (const_iterator pos, InpIterator beg, InpIterator end, allocator_v2, std::input_iterator_tag) { //Just forward to the default one priv_create_and_insert_nodes(pos, beg, end, allocator_v1(), std::input_iterator_tag()); } class insertion_functor; friend class insertion_functor; class insertion_functor { Icont &icont_; typename Icont::const_iterator pos_; public: insertion_functor(Icont &icont, typename Icont::const_iterator pos) : icont_(icont), pos_(pos) {} void operator()(Node &n) { this->icont_.insert(pos_, n); } }; template void priv_create_and_insert_nodes (const_iterator pos, FwdIterator beg, FwdIterator end, allocator_v2, std::forward_iterator_tag) { if(beg != end){ //Optimized allocation and construction this->allocate_many_and_construct (beg, std::distance(beg, end), insertion_functor(this->icont(), pos.get())); } } //Default constructed version void priv_create_and_insert_nodes(const_iterator pos, size_type n) { typedef default_construct_iterator default_iterator; this->priv_create_and_insert_nodes(pos, default_iterator(n), default_iterator()); } //Copy constructed version void priv_create_and_insert_nodes(const_iterator pos, size_type n, const T& x) { typedef constant_iterator cvalue_iterator; this->priv_create_and_insert_nodes(pos, cvalue_iterator(x, n), cvalue_iterator()); } //Dispatch to detect iterator range or integer overloads template void priv_insert_dispatch(const_iterator p, InputIter first, InputIter last, container_detail::false_) { this->priv_create_and_insert_nodes(p, first, last); } template void priv_insert_dispatch(const_iterator p, Integer n, Integer x, container_detail::true_) { this->insert(p, (size_type)n, x); } void priv_fill_assign(size_type n, const T& val) { iterator i = this->begin(), iend = this->end(); for ( ; i != iend && n > 0; ++i, --n) *i = val; if (n > 0){ this->priv_create_and_insert_nodes(this->cend(), n, val); } else{ this->erase(i, cend()); } } template void priv_assign_dispatch(Integer n, Integer val, container_detail::true_) { this->priv_fill_assign((size_type) n, (T) val); } template void priv_assign_dispatch(InputIter first2, InputIter last2, container_detail::false_) { iterator first1 = this->begin(); iterator last1 = this->end(); for ( ; first1 != last1 && first2 != last2; ++first1, ++first2) *first1 = *first2; if (first2 == last2) this->erase(first1, last1); else{ this->priv_create_and_insert_nodes(last1, first2, last2); } } //Functors for member algorithm defaults struct value_less { bool operator()(const value_type &a, const value_type &b) const { return a < b; } }; struct value_equal { bool operator()(const value_type &a, const value_type &b) const { return a == b; } }; /// @endcond }; template inline bool operator==(const list& x, const list& y) { if(x.size() != y.size()){ return false; } typedef typename list::const_iterator const_iterator; const_iterator end1 = x.end(); const_iterator i1 = x.begin(); const_iterator i2 = y.begin(); while (i1 != end1 && *i1 == *i2) { ++i1; ++i2; } return i1 == end1; } template inline bool operator<(const list& x, const list& y) { return std::lexicographical_compare(x.begin(), x.end(), y.begin(), y.end()); } template inline bool operator!=(const list& x, const list& y) { return !(x == y); } template inline bool operator>(const list& x, const list& y) { return y < x; } template inline bool operator<=(const list& x, const list& y) { return !(y < x); } template inline bool operator>=(const list& x, const list& y) { return !(x < y); } template inline void swap(list& x, list& y) { x.swap(y); } /// @cond } //namespace container { /* //!has_trivial_destructor_after_move<> == true_type //!specialization for optimizations template struct has_trivial_destructor_after_move > { static const bool value = has_trivial_destructor::value; }; */ namespace container { /// @endcond }} #include #endif // BOOST_CONTAINER_LIST_HPP_