// //======================================================================= // Copyright 2002 Marc Wintermantel (wintermantel@even-ag.ch) // ETH Zurich, Center of Structure Technologies (www.imes.ethz.ch/st) // // Distributed under the Boost Software License, Version 1.0. (See // accompanying file LICENSE_1_0.txt or copy at // http://www.boost.org/LICENSE_1_0.txt) //======================================================================= // #ifndef BOOST_GRAPH_SLOAN_HPP #define BOOST_GRAPH_SLOAN_HPP #define WEIGHT1 1 //default weight for the distance in the Sloan algorithm #define WEIGHT2 2 //default weight for the degree in the Sloan algorithm #include #include #include #include #include #include #include #include #include #include #include #include #include #include //////////////////////////////////////////////////////////// // //Sloan-Algorithm for graph reordering //(optimzes profile and wavefront, not primiraly bandwidth // //////////////////////////////////////////////////////////// namespace boost { ///////////////////////////////////////////////////////////////////////// // Function that returns the maximum depth of // a rooted level strucutre (RLS) // ///////////////////////////////////////////////////////////////////////// template unsigned RLS_depth(Distance& d) { unsigned h_s = 0; typename Distance::iterator iter; for (iter = d.begin(); iter != d.end(); ++iter) { if(*iter > h_s) { h_s = *iter; } } return h_s; } ///////////////////////////////////////////////////////////////////////// // Function that returns the width of the largest level of // a rooted level strucutre (RLS) // ///////////////////////////////////////////////////////////////////////// template unsigned RLS_max_width(Distance& d, my_int depth) { //Searching for the maximum width of a level std::vector dummy_width(depth+1, 0); std::vector::iterator my_it; typename Distance::iterator iter; unsigned w_max = 0; for (iter = d.begin(); iter != d.end(); ++iter) { dummy_width[*iter]++; } for(my_it = dummy_width.begin(); my_it != dummy_width.end(); ++my_it) { if(*my_it > w_max) w_max = *my_it; } return w_max; } ///////////////////////////////////////////////////////////////////////// // Function for finding a good starting node for Sloan algorithm // // This is to find a good starting node. "good" is in the sense // of the ordering generated. ///////////////////////////////////////////////////////////////////////// template typename graph_traits::vertex_descriptor sloan_start_end_vertices(Graph& G, typename graph_traits::vertex_descriptor &s, ColorMap color, DegreeMap degree) { typedef typename property_traits::value_type Degree; typedef typename graph_traits::vertex_descriptor Vertex; typedef typename std::vector< typename graph_traits::vertices_size_type>::iterator vec_iter; typedef typename graph_traits::vertices_size_type size_type; typedef typename property_map::const_type VertexID; s = *(vertices(G).first); Vertex e = s; Vertex i; unsigned my_degree = get(degree, s ); unsigned dummy, h_i, h_s, w_i, w_e; bool new_start = true; unsigned maximum_degree = 0; //Creating a std-vector for storing the distance from the start vertex in dist std::vector::vertices_size_type> dist(num_vertices(G), 0); //Wrap a property_map_iterator around the std::iterator boost::iterator_property_map dist_pmap(dist.begin(), get(vertex_index, G)); //Creating a property_map for the indices of a vertex typename property_map::type index_map = get(vertex_index, G); //Creating a priority queue typedef indirect_cmp > Compare; Compare comp(degree); std::priority_queue, Compare> degree_queue(comp); //step 1 //Scan for the vertex with the smallest degree and the maximum degree typename graph_traits::vertex_iterator ui, ui_end; for (boost::tie(ui, ui_end) = vertices(G); ui != ui_end; ++ui) { dummy = get(degree, *ui); if(dummy < my_degree) { my_degree = dummy; s = *ui; } if(dummy > maximum_degree) { maximum_degree = dummy; } } //end 1 do{ new_start = false; //Setting the loop repetition status to false //step 2 //initialize the the disance std-vector with 0 for(typename std::vector::vertices_size_type>::iterator iter = dist.begin(); iter != dist.end(); ++iter) *iter = 0; //generating the RLS (rooted level structure) breadth_first_search (G, s, visitor ( make_bfs_visitor(record_distances(dist_pmap, on_tree_edge() ) ) ) ); //end 2 //step 3 //calculating the depth of the RLS h_s = RLS_depth(dist); //step 4 //pushing one node of each degree in an ascending manner into degree_queue std::vector shrink_trace(maximum_degree, false); for (boost::tie(ui, ui_end) = vertices(G); ui != ui_end; ++ui) { dummy = get(degree, *ui); if( (dist[index_map[*ui]] == h_s ) && ( !shrink_trace[ dummy ] ) ) { degree_queue.push(*ui); shrink_trace[ dummy ] = true; } } //end 3 & 4 // step 5 // Initializing w w_e = (std::numeric_limits::max)(); //end 5 //step 6 //Testing for termination while( !degree_queue.empty() ) { i = degree_queue.top(); //getting the node with the lowest degree from the degree queue degree_queue.pop(); //ereasing the node with the lowest degree from the degree queue //generating a RLS for(typename std::vector::vertices_size_type>::iterator iter = dist.begin(); iter != dist.end(); ++iter) *iter = 0; breadth_first_search (G, i, boost::visitor ( make_bfs_visitor(record_distances(dist_pmap, on_tree_edge() ) ) ) ); //Calculating depth and width of the rooted level h_i = RLS_depth(dist); w_i = RLS_max_width(dist, h_i); //Testing for termination if( (h_i > h_s) && (w_i < w_e) ) { h_s = h_i; s = i; while(!degree_queue.empty()) degree_queue.pop(); new_start = true; } else if(w_i < w_e) { w_e = w_i; e = i; } } //end 6 }while(new_start); return e; } ////////////////////////////////////////////////////////////////////////// // Sloan algorithm with a given starting Vertex. // // This algorithm requires user to provide a starting vertex to // compute Sloan ordering. ////////////////////////////////////////////////////////////////////////// template OutputIterator sloan_ordering(Graph& g, typename graph_traits::vertex_descriptor s, typename graph_traits::vertex_descriptor e, OutputIterator permutation, ColorMap color, DegreeMap degree, PriorityMap priority, Weight W1, Weight W2) { //typedef typename property_traits::value_type Degree; typedef typename property_traits::value_type Degree; typedef typename property_traits::value_type ColorValue; typedef color_traits Color; typedef typename graph_traits::vertex_descriptor Vertex; typedef typename std::vector::vertices_size_type>::iterator vec_iter; typedef typename graph_traits::vertices_size_type size_type; typedef typename property_map::const_type VertexID; //Creating a std-vector for storing the distance from the end vertex in it typename std::vector::vertices_size_type> dist(num_vertices(g), 0); //Wrap a property_map_iterator around the std::iterator boost::iterator_property_map dist_pmap(dist.begin(), get(vertex_index, g)); breadth_first_search (g, e, visitor ( make_bfs_visitor(record_distances(dist_pmap, on_tree_edge() ) ) ) ); //Creating a property_map for the indices of a vertex typename property_map::type index_map = get(vertex_index, g); //Sets the color and priority to their initial status unsigned cdeg; typename graph_traits::vertex_iterator ui, ui_end; for (boost::tie(ui, ui_end) = vertices(g); ui != ui_end; ++ui) { put(color, *ui, Color::white()); cdeg=get(degree, *ui)+1; put(priority, *ui, W1*dist[index_map[*ui]]-W2*cdeg ); } //Priority list typedef indirect_cmp > Compare; Compare comp(priority); std::list priority_list; //Some more declarations typename graph_traits::out_edge_iterator ei, ei_end, ei2, ei2_end; Vertex u, v, w; put(color, s, Color::green()); //Sets the color of the starting vertex to gray priority_list.push_front(s); //Puts s into the priority_list while ( !priority_list.empty() ) { priority_list.sort(comp); //Orders the elements in the priority list in an ascending manner u = priority_list.front(); //Accesses the last element in the priority list priority_list.pop_front(); //Removes the last element in the priority list if(get(color, u) == Color::green() ) { //for-loop over all out-edges of vertex u for (boost::tie(ei, ei_end) = out_edges(u, g); ei != ei_end; ++ei) { v = target(*ei, g); put( priority, v, get(priority, v) + W2 ); //updates the priority if (get(color, v) == Color::white() ) //test if the vertex is inactive { put(color, v, Color::green() ); //giving the vertex a preactive status priority_list.push_front(v); //writing the vertex in the priority_queue } } } //Here starts step 8 *permutation++ = u; //Puts u to the first position in the permutation-vector put(color, u, Color::black() ); //Gives u an inactive status //for loop over all the adjacent vertices of u for (boost::tie(ei, ei_end) = out_edges(u, g); ei != ei_end; ++ei) { v = target(*ei, g); if (get(color, v) == Color::green() ) { //tests if the vertex is inactive put(color, v, Color::red() ); //giving the vertex an active status put(priority, v, get(priority, v)+W2); //updates the priority //for loop over alll adjacent vertices of v for (boost::tie(ei2, ei2_end) = out_edges(v, g); ei2 != ei2_end; ++ei2) { w = target(*ei2, g); if(get(color, w) != Color::black() ) { //tests if vertex is postactive put(priority, w, get(priority, w)+W2); //updates the priority if(get(color, w) == Color::white() ){ put(color, w, Color::green() ); // gives the vertex a preactive status priority_list.push_front(w); // puts the vertex into the priority queue } //end if } //end if } //end for } //end if } //end for } //end while return permutation; } ///////////////////////////////////////////////////////////////////////////////////////// // Same algorithm as before, but without the weights given (taking default weights template OutputIterator sloan_ordering(Graph& g, typename graph_traits::vertex_descriptor s, typename graph_traits::vertex_descriptor e, OutputIterator permutation, ColorMap color, DegreeMap degree, PriorityMap priority) { return sloan_ordering(g, s, e, permutation, color, degree, priority, WEIGHT1, WEIGHT2); } ////////////////////////////////////////////////////////////////////////// // Sloan algorithm without a given starting Vertex. // // This algorithm finds a good starting vertex itself to // compute Sloan-ordering. ////////////////////////////////////////////////////////////////////////// template < class Graph, class OutputIterator, class Color, class Degree, class Priority, class Weight> inline OutputIterator sloan_ordering(Graph& G, OutputIterator permutation, Color color, Degree degree, Priority priority, Weight W1, Weight W2 ) { typedef typename boost::graph_traits::vertex_descriptor Vertex; Vertex s, e; e = sloan_start_end_vertices(G, s, color, degree); return sloan_ordering(G, s, e, permutation, color, degree, priority, W1, W2); } ///////////////////////////////////////////////////////////////////////////////////////// // Same as before, but without given weights (default weights are taken instead) template < class Graph, class OutputIterator, class Color, class Degree, class Priority > inline OutputIterator sloan_ordering(Graph& G, OutputIterator permutation, Color color, Degree degree, Priority priority) { return sloan_ordering(G, permutation, color, degree, priority, WEIGHT1, WEIGHT2); } } // namespace boost #endif // BOOST_GRAPH_SLOAN_HPP